Getting wrong answer to differential equation (first order separable ODE)

Click For Summary

Discussion Overview

The discussion revolves around solving a first-order separable ordinary differential equation (ODE) given by the equation \(\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0\) with the initial condition \(y(0)=\frac{\sqrt{3}}{2}\). Participants explore different approaches to integrating the equation and deriving the solution, while also addressing discrepancies between their results and those provided in a textbook.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose that the integral of the rewritten equation leads to \(\sin^{-1}(x)\) and \(\sin^{-1}(y)\), suggesting a relationship between the two variables.
  • Others argue that the general solution can be expressed as \(y=\sin\left(\arcsin(x) + C\right)\) and derive the constant \(C\) using the initial condition.
  • A later reply questions the value of \(C\), suggesting it could be \(-\frac{\pi}{3}\) based on a different interpretation of the initial condition.
  • Some participants express confusion over the placement of the arbitrary constant \(C\) in the equation, debating whether it affects the sign or the form of the solution.
  • There are multiple interpretations of how to apply the initial condition, leading to different conclusions about the value of \(C\) and the resulting equations.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the value of \(C\) or the final form of the solution. There are competing views on how to interpret the integration process and the application of the initial condition, resulting in an unresolved discussion.

Contextual Notes

Some participants note that their approaches yield different equations, highlighting potential misunderstandings in the integration steps or the application of the initial condition. The discussion reflects the complexity of handling arbitrary constants in differential equations.

find_the_fun
Messages
147
Reaction score
0
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]
 
Physics news on Phys.org
find_the_fun said:
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]

Well, assuming that is indeed the correct problem, then your set up is correct. Solving the ODE gives you $y=\sin\left(\arcsin (x) + C\right)$.

The initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ tells you that $\dfrac{\sqrt{3}}{2}=\sin\left(C\right) \implies C= \dfrac{\pi}{3}+2k\pi,\dfrac{2\pi}{3}+2k\pi$. Since we can't have an infinite number of constants, take $C$ to be the principal value, i.e. $C=\dfrac{\pi}{3}$,

Then $y(x) = \sin\left(\arcsin x + \dfrac{\pi}{3}\right)$.

Now to get the answer they have, apply the identity $\sin(\alpha+\beta) = \sin\alpha\cos\beta+\cos\alpha\sin\beta$ and simplify.

I hope this makes sense!
 
find_the_fun said:
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]

The general solution You arrive to is...

$\displaystyle \sin ^{-1} y = \sin^{-1} x + c\ (1)$

... and from (1) You derive...

$\displaystyle y = x\ \cos c + \sqrt {1-x^{2}}\ \sin c\ (2)$

Now You use the initial value and find c...

Kind regards

$\chi$ $\sigma$
 
find_the_fun said:
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]

I edited the thread title and the body of the post to rewrite the n's in lowercase and added a bit of information to the title to describe the problem.
 
MarkFL said:
I edited the thread title and the body of the post to rewrite the n's in lowercase and added a bit of information to the title to describe the problem.

Yea sorry about that my keyboard is breaking down.
 
Chris L T521 said:
Well, assuming that is indeed the correct problem, then your set up is correct. Solving the ODE gives you $y=\sin\left(\arcsin (x) + C\right)$.

The initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ tells you that $\dfrac{\sqrt{3}}{2}=\sin\left(C\right) \implies C= \dfrac{\pi}{3}+2k\pi,\dfrac{2\pi}{3}+2k\pi$. Since we can't have an infinite number of constants, take $C$ to be the principal value, i.e. $C=\dfrac{\pi}{3}$,

Then $y(x) = \sin\left(\arcsin x + \dfrac{\pi}{3}\right)$.

Now to get the answer they have, apply the identity $\sin(\alpha+\beta) = \sin\alpha\cos\beta+\cos\alpha\sin\beta$ and simplify.

I hope this makes sense!

Doesn't [math]C=-\frac{\pi}{3}[/math] because [math]arcsin(0)=arcsin(\frac{\sqrt{3}}{2})+C[/math] so [math]C=-arcsin(\frac{\sqrt{3}}{2})[/math]? I don't follow you here "The initial condition [FONT=MathJax_Math]y[FONT=MathJax_Main]([FONT=MathJax_Main]0[FONT=MathJax_Main])[FONT=MathJax_Main]=[FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2 tells you that [FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2[FONT=MathJax_Main]=[FONT=MathJax_Main]sin[FONT=MathJax_Main]([FONT=MathJax_Math]C[FONT=MathJax_Main])"[FONT=MathJax_Main]
 
find_the_fun said:
Doesn't [math]C=-\frac{\pi}{3}[/math] because [math]arcsin(0)=arcsin(\frac{\sqrt{3}}{2})+C[/math] so [math]C=-arcsin(\frac{\sqrt{3}}{2})[/math]? I don't follow you here "The initial condition [FONT=MathJax_Math]y[FONT=MathJax_Main]([FONT=MathJax_Main]0[FONT=MathJax_Main])[FONT=MathJax_Main]=[FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2 tells you that [FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2[FONT=MathJax_Main]=[FONT=MathJax_Main]sin[FONT=MathJax_Main]([FONT=MathJax_Math]C[FONT=MathJax_Main])"

If $y(x) = \sin\left(\arcsin x + C\right)$, then $y(0) = \dfrac{\sqrt{3}}{2} \implies \dfrac{\sqrt{3}}{2} = \sin(\arcsin 0 + C) = \sin C$.

Thus $\dfrac{\sqrt{3}}{2}=\sin C \implies C=\arcsin\left(\dfrac{\sqrt{3}}{2}\right) = \dfrac{\pi}{3}$.

If you want to leave things in terms of inverse sines, then the initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ would the get plugged in as follows:

\[\arcsin y = \arcsin x + C \xrightarrow{y(0)=\dfrac{\sqrt{3}}{2}}{} \arcsin\left(\frac{\sqrt{3}}{2}\right) = \arcsin 0 + C \implies C = \arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}.\]

I hope this clarifies things!
 
Chris L T521 said:
If $y(x) = \sin\left(\arcsin x + C\right)$, then $y(0) = \dfrac{\sqrt{3}}{2} \implies \dfrac{\sqrt{3}}{2} = \sin(\arcsin 0 + C) = \sin C$.

Thus $\dfrac{\sqrt{3}}{2}=\sin C \implies C=\arcsin\left(\dfrac{\sqrt{3}}{2}\right) = \dfrac{\pi}{3}$.

If you want to leave things in terms of inverse sines, then the initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ would the get plugged in as follows:

\[\arcsin y = \arcsin x + C \xrightarrow{y(0)=\dfrac{\sqrt{3}}{2}}{} \arcsin\left(\frac{\sqrt{3}}{2}\right) = \arcsin 0 + C \implies C = \arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}.\]

I hope this clarifies things!

I see your way but is there something wrong with the following approach:

[math]\int \frac{1}{\sqrt{1-x^2}} dx = \int \frac{1}{\sqrt{1-y^2}} dy[/math] gives [math]arcsin(x)=arcsin(y)+C[/math] using the initial condition
[math]arcsin(0)=arcsin(\frac{\sqrt{3}}{2})+C[/math]
[math]0=a\frac{\pi}{3}+C[/math]
therefore [math]C=-\frac{\pi}{-3}[/math] note the negative sign.

Oh I see I switched what I should be plugging in for x and y.
 
Last edited:
Chris L T521 said:
If you want to leave things in terms of inverse sines, then the initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ would the get plugged in as follows:

\[\arcsin y = \arcsin x + C\]...

I get a different equation because

[math]\int \frac{1}{\sqrt{1-x^2}}dx=\int \frac{1}{\sqrt{1-y^2}}dy[/math] gives [math]arcsin(x)=arcsin(y)+C[/math] How come your C is on the other side of the equation? Do you get to decide which side of the equation has the arbitrary constant? Doesn't it change the sign?
 
  • #10
find_the_fun said:
I get a different equation because

[math]\int \frac{1}{\sqrt{1-x^2}}dx=\int \frac{1}{\sqrt{1-y^2}}dy[/math] gives [math]arcsin(x)=arcsin(y)+C[/math] How come your C is on the other side of the equation? Do you get to decide which side of the equation has the arbitrary constant? Doesn't it change the sign?

Your arbitrary constant is just that, ARBITRARY. You can write it in any form you like. When you solve for it, you'll get the same answer.
 

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K