Getting wrong answer to differential equation (first order separable ODE)

Click For Summary
SUMMARY

The discussion centers on solving the first-order separable ordinary differential equation (ODE) given by the equation \(\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0\) with the initial condition \(y(0)=\frac{\sqrt{3}}{2}\). Participants confirm that the correct general solution is \(y=\sin\left(\arcsin(x) + \frac{\pi}{3}\right)\), derived from the initial condition leading to \(C=\frac{\pi}{3}\). The conversation also addresses the application of the sine addition formula to simplify the solution further. Misunderstandings regarding the placement of the constant \(C\) are clarified, emphasizing that it can be positioned arbitrarily in the equation without affecting the final result.

PREREQUISITES
  • Understanding of first-order separable ordinary differential equations (ODEs)
  • Familiarity with inverse trigonometric functions, specifically \(\arcsin\)
  • Knowledge of trigonometric identities, particularly the sine addition formula
  • Ability to manipulate and solve equations involving constants of integration
NEXT STEPS
  • Study the derivation of solutions for first-order separable ODEs
  • Learn about the properties and applications of inverse trigonometric functions
  • Explore the sine addition formula and its implications in solving trigonometric equations
  • Investigate common pitfalls in solving differential equations, particularly regarding constants of integration
USEFUL FOR

Students and educators in mathematics, particularly those focusing on differential equations, trigonometry, and calculus. This discussion is beneficial for anyone looking to deepen their understanding of solving first-order separable ODEs and applying trigonometric identities.

find_the_fun
Messages
147
Reaction score
0
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]
 
Physics news on Phys.org
find_the_fun said:
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]

Well, assuming that is indeed the correct problem, then your set up is correct. Solving the ODE gives you $y=\sin\left(\arcsin (x) + C\right)$.

The initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ tells you that $\dfrac{\sqrt{3}}{2}=\sin\left(C\right) \implies C= \dfrac{\pi}{3}+2k\pi,\dfrac{2\pi}{3}+2k\pi$. Since we can't have an infinite number of constants, take $C$ to be the principal value, i.e. $C=\dfrac{\pi}{3}$,

Then $y(x) = \sin\left(\arcsin x + \dfrac{\pi}{3}\right)$.

Now to get the answer they have, apply the identity $\sin(\alpha+\beta) = \sin\alpha\cos\beta+\cos\alpha\sin\beta$ and simplify.

I hope this makes sense!
 
find_the_fun said:
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]

The general solution You arrive to is...

$\displaystyle \sin ^{-1} y = \sin^{-1} x + c\ (1)$

... and from (1) You derive...

$\displaystyle y = x\ \cos c + \sqrt {1-x^{2}}\ \sin c\ (2)$

Now You use the initial value and find c...

Kind regards

$\chi$ $\sigma$
 
find_the_fun said:
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]

rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]

Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]

I edited the thread title and the body of the post to rewrite the n's in lowercase and added a bit of information to the title to describe the problem.
 
MarkFL said:
I edited the thread title and the body of the post to rewrite the n's in lowercase and added a bit of information to the title to describe the problem.

Yea sorry about that my keyboard is breaking down.
 
Chris L T521 said:
Well, assuming that is indeed the correct problem, then your set up is correct. Solving the ODE gives you $y=\sin\left(\arcsin (x) + C\right)$.

The initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ tells you that $\dfrac{\sqrt{3}}{2}=\sin\left(C\right) \implies C= \dfrac{\pi}{3}+2k\pi,\dfrac{2\pi}{3}+2k\pi$. Since we can't have an infinite number of constants, take $C$ to be the principal value, i.e. $C=\dfrac{\pi}{3}$,

Then $y(x) = \sin\left(\arcsin x + \dfrac{\pi}{3}\right)$.

Now to get the answer they have, apply the identity $\sin(\alpha+\beta) = \sin\alpha\cos\beta+\cos\alpha\sin\beta$ and simplify.

I hope this makes sense!

Doesn't [math]C=-\frac{\pi}{3}[/math] because [math]arcsin(0)=arcsin(\frac{\sqrt{3}}{2})+C[/math] so [math]C=-arcsin(\frac{\sqrt{3}}{2})[/math]? I don't follow you here "The initial condition [FONT=MathJax_Math]y[FONT=MathJax_Main]([FONT=MathJax_Main]0[FONT=MathJax_Main])[FONT=MathJax_Main]=[FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2 tells you that [FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2[FONT=MathJax_Main]=[FONT=MathJax_Main]sin[FONT=MathJax_Main]([FONT=MathJax_Math]C[FONT=MathJax_Main])"[FONT=MathJax_Main]
 
find_the_fun said:
Doesn't [math]C=-\frac{\pi}{3}[/math] because [math]arcsin(0)=arcsin(\frac{\sqrt{3}}{2})+C[/math] so [math]C=-arcsin(\frac{\sqrt{3}}{2})[/math]? I don't follow you here "The initial condition [FONT=MathJax_Math]y[FONT=MathJax_Main]([FONT=MathJax_Main]0[FONT=MathJax_Main])[FONT=MathJax_Main]=[FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2 tells you that [FONT=MathJax_Main]3[FONT=MathJax_Main]√[FONT=MathJax_Main]2[FONT=MathJax_Main]=[FONT=MathJax_Main]sin[FONT=MathJax_Main]([FONT=MathJax_Math]C[FONT=MathJax_Main])"

If $y(x) = \sin\left(\arcsin x + C\right)$, then $y(0) = \dfrac{\sqrt{3}}{2} \implies \dfrac{\sqrt{3}}{2} = \sin(\arcsin 0 + C) = \sin C$.

Thus $\dfrac{\sqrt{3}}{2}=\sin C \implies C=\arcsin\left(\dfrac{\sqrt{3}}{2}\right) = \dfrac{\pi}{3}$.

If you want to leave things in terms of inverse sines, then the initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ would the get plugged in as follows:

\[\arcsin y = \arcsin x + C \xrightarrow{y(0)=\dfrac{\sqrt{3}}{2}}{} \arcsin\left(\frac{\sqrt{3}}{2}\right) = \arcsin 0 + C \implies C = \arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}.\]

I hope this clarifies things!
 
Chris L T521 said:
If $y(x) = \sin\left(\arcsin x + C\right)$, then $y(0) = \dfrac{\sqrt{3}}{2} \implies \dfrac{\sqrt{3}}{2} = \sin(\arcsin 0 + C) = \sin C$.

Thus $\dfrac{\sqrt{3}}{2}=\sin C \implies C=\arcsin\left(\dfrac{\sqrt{3}}{2}\right) = \dfrac{\pi}{3}$.

If you want to leave things in terms of inverse sines, then the initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ would the get plugged in as follows:

\[\arcsin y = \arcsin x + C \xrightarrow{y(0)=\dfrac{\sqrt{3}}{2}}{} \arcsin\left(\frac{\sqrt{3}}{2}\right) = \arcsin 0 + C \implies C = \arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}.\]

I hope this clarifies things!

I see your way but is there something wrong with the following approach:

[math]\int \frac{1}{\sqrt{1-x^2}} dx = \int \frac{1}{\sqrt{1-y^2}} dy[/math] gives [math]arcsin(x)=arcsin(y)+C[/math] using the initial condition
[math]arcsin(0)=arcsin(\frac{\sqrt{3}}{2})+C[/math]
[math]0=a\frac{\pi}{3}+C[/math]
therefore [math]C=-\frac{\pi}{-3}[/math] note the negative sign.

Oh I see I switched what I should be plugging in for x and y.
 
Last edited:
Chris L T521 said:
If you want to leave things in terms of inverse sines, then the initial condition $y(0)=\dfrac{\sqrt{3}}{2}$ would the get plugged in as follows:

\[\arcsin y = \arcsin x + C\]...

I get a different equation because

[math]\int \frac{1}{\sqrt{1-x^2}}dx=\int \frac{1}{\sqrt{1-y^2}}dy[/math] gives [math]arcsin(x)=arcsin(y)+C[/math] How come your C is on the other side of the equation? Do you get to decide which side of the equation has the arbitrary constant? Doesn't it change the sign?
 
  • #10
find_the_fun said:
I get a different equation because

[math]\int \frac{1}{\sqrt{1-x^2}}dx=\int \frac{1}{\sqrt{1-y^2}}dy[/math] gives [math]arcsin(x)=arcsin(y)+C[/math] How come your C is on the other side of the equation? Do you get to decide which side of the equation has the arbitrary constant? Doesn't it change the sign?

Your arbitrary constant is just that, ARBITRARY. You can write it in any form you like. When you solve for it, you'll get the same answer.
 

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K