find_the_fun
- 147
- 0
[math]\sqrt{1-y^2}dx - \sqrt{1-x^2}dy=0[/math], [math]y(0)=\frac{\sqrt{3}}{2}[/math]
rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]
Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]
rewriting the equation gives [math]\frac{1}{\sqrt{1-x^2}}dx = \frac{1}{\sqrt{1-y^2}}dy[/math]
Isn't this the integral for [math]\sin^{-1}(x)[/math] & [math]\sin^{-1}(y)[/math]? The back of book has [math]y=1/2x+\frac{\sqrt{3}}{2}\sqrt{1-x^2}[/math]