MHB Given a,b∈T, a^2−ab+b^2 divides a^2b^2, Prove that T is finite

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Finite
Click For Summary
The discussion centers on proving that the set T of natural numbers, where for any a, b in T, the expression a^2 - ab + b^2 divides a^2b^2, is finite. It is established that a and b must be coprime or one of them must equal 1; otherwise, if (a, b) is a solution, then (na, nb) for any integer n would also be a solution, leading to an infinite set. The proof hinges on the divisibility condition and the properties of coprime numbers. The conclusion drawn is that the conditions imposed on a and b restrict the size of T, confirming its finiteness. Thus, T cannot contain infinitely many elements.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $T$ be a set of natural numbers such that for any $a, b \in T$, $a^2 − ab + b^2$ divides $a^2b^2$.

Prove, that $T$ is finite.
 
Mathematics news on Phys.org
lfdahl said:
Let $T$ be a set of natural numbers such that for any $a, b \in T$, $a^2 − ab + b^2$ divides $a^2b^2$.

Prove, that $T$ is finite.

For the above to be valid a and b should be co-prime or one of them 1 else if (a,b) is a solution then (na,nb) is also a sloution for integer N
 
Hi, kaliprasad!
In order to answer your comment, I´ll suppose, that $a,b \in T$ and $a$ and $b$ are not coprimes.

Let $d = gcd(a,b)$. Then we have:

$a = da_1$ and $b = db_1$, where $a_1$ and $b_1$ are coprimes.

Then: $a_1^2-a_1b_1+b_1^2$ divides $d^2a_1^2b_1^2$, but $gcd(a_1^2-a_1b_1+b_1^2,a_1b_1) = 1$. Hence, $a_1^2-a_1b_1+b_1^2$ divides $d^2$, i.e. $a^2-ab+b^2$ divides $d^4$.

Since $d \leq a$, we have $a^2-ab+b^2 \leq a^4$. If you fix any $a \in T$, $b$ can only take on a finite number of distinct values.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
905