MHB Given a,b∈T, a^2−ab+b^2 divides a^2b^2, Prove that T is finite

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Finite
AI Thread Summary
The discussion centers on proving that the set T of natural numbers, where for any a, b in T, the expression a^2 - ab + b^2 divides a^2b^2, is finite. It is established that a and b must be coprime or one of them must equal 1; otherwise, if (a, b) is a solution, then (na, nb) for any integer n would also be a solution, leading to an infinite set. The proof hinges on the divisibility condition and the properties of coprime numbers. The conclusion drawn is that the conditions imposed on a and b restrict the size of T, confirming its finiteness. Thus, T cannot contain infinitely many elements.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $T$ be a set of natural numbers such that for any $a, b \in T$, $a^2 − ab + b^2$ divides $a^2b^2$.

Prove, that $T$ is finite.
 
Mathematics news on Phys.org
lfdahl said:
Let $T$ be a set of natural numbers such that for any $a, b \in T$, $a^2 − ab + b^2$ divides $a^2b^2$.

Prove, that $T$ is finite.

For the above to be valid a and b should be co-prime or one of them 1 else if (a,b) is a solution then (na,nb) is also a sloution for integer N
 
Hi, kaliprasad!
In order to answer your comment, I´ll suppose, that $a,b \in T$ and $a$ and $b$ are not coprimes.

Let $d = gcd(a,b)$. Then we have:

$a = da_1$ and $b = db_1$, where $a_1$ and $b_1$ are coprimes.

Then: $a_1^2-a_1b_1+b_1^2$ divides $d^2a_1^2b_1^2$, but $gcd(a_1^2-a_1b_1+b_1^2,a_1b_1) = 1$. Hence, $a_1^2-a_1b_1+b_1^2$ divides $d^2$, i.e. $a^2-ab+b^2$ divides $d^4$.

Since $d \leq a$, we have $a^2-ab+b^2 \leq a^4$. If you fix any $a \in T$, $b$ can only take on a finite number of distinct values.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top