If you google "introduction QBism" the top hit will be this November 2013 paper by Fuchs Mermin Schack
http://arxiv.org/abs/1311.5253
An Introduction to QBism with an Application to the Locality of Quantum Mechanics
We give an introduction to the QBist interpretation of quantum mechanics. We note that it removes the paradoxes, conundra, and pseudo-problems that have
plagued quantum foundations for the past nine decades. As an example, we show in detail how it eliminates quantum "non locality".
11 pages.
I don't think that's an empty claim and it signals a kind of change in the weather around quantum foundations and interpretation. Basically they say "let's put the agent (the subject, the physicist) into the picture instead of pretending that there's only the objective real world, and let's acknowledge that agents can communicate about their common reality." There is a kind of common sense realism here, I find.
This paper is one of two which for me personally characterize an epistemic view of QM. Bear in mind that there is more to this than merely Quantum Mechanics. There are significant epistemic developments in GR, StatMech, Thermodynamcs and in the
interconnections among these fields. But just looking at QM for the moment, the OTHER paper personally significant for me is what you get when you google "relational EPR"
If you google "relational EPR" the top hit will be this April 2006 paper by Smerlak and Rovelli:
http://arxiv.org/abs/quant-ph/0604064
Relational EPR
We study the EPR-type correlations from the perspective of the relational interpretation of quantum mechanics. We argue that these correlations do not entail any form of 'non-locality', when viewed in the context of this interpretation. The abandonment of strict Einstein realism implied by the relational stance permits to reconcile quantum mechanics, completeness, (operationally defined) separability, and locality.
10 pages
==excerpt==
... It is far from the spirit of RQM to assume that each observer has a “solipsistic” picture of reality, disconnected from the picture of all the other observers. In fact, the very reason we can do science is because of the consistency we find in nature: if I see an elephant and I ask you what you see, I expect you to tell me that you too see an elephant. If not, something is wrong.
But, as claimed above, any such conversation about elephants is ultimately an interaction between quantum systems. This fact may be irrelevant in everyday life, but disregarding it may give rise to subtle confusions, such as the one leading to the conclusion of non-local EPR influences.
In the EPR situation, A and B can be considered two distinct observers, both making measurements on α and β. The comparison of the results of their measurements, we have argued, cannot be instantaneous, that is, it requires A and B to be in causal contact. More importantly, with respect to A, B is to be considered as a normal quantum system (and, of course, with respect to B, A is a normal quantum system). So, what happens if A and B compare notes? Have they seen the same elephant?
It is one of the most remarkable features of quantum mechanics that indeed it automatically guarantees precisely the kind of consistency that we see in nature [6]…
==endquote==
Both these papers are so thematically similar that I continue to find it odd that the November 2013 one does not cite the April 2006 one as a reference! In any case both have helped to form my own views and thinking about this topic.