Gradient ascent with constraints

Click For Summary
To optimize a convex function F(x,y) using gradient ascent with constraints on x and y, it is essential to incorporate these constraints directly into the algorithm. When the maximization path encounters a constraint, such as an upper bound on x, the algorithm should adjust x to that bound and continue optimizing y while keeping x fixed. This approach allows for conditional updates based on the constraints. The discussion clarifies that Lagrange multipliers are not applicable in this scenario, as the constraints are integrated into the optimization process itself. Understanding how the maximization path interacts with constraints is crucial for effective implementation.
eren
Messages
2
Reaction score
0
Hi,
I have a convex function F(x,y) that I want to optimize. Since, derivative of F does not closed form, I want to use gradient ascent. The problem is, I have constrains on x and y.
I don't know how to incorporate this into gradient search. If there was a closed form, I would use Lagrange multipliers. What should I do in this case?
Thanks,
 
Physics news on Phys.org
You should find a way to incorporate the constraints into your programming of steepest ascent, such that if the maximization path meets a constraint (say an upper bound on x, U[x])) then it should set x = U[x] and follow the steepest descent conditional on x = U[x] (that is, by changing y only). It should continue doing so until and unless x becomes free again (x < U[x]).
 
Thanks a lot for the reply.
Does this mean it has nothing to do with Lagrange multipliers? Indeed, I have a concave function F(x,y) in which x and y are vectors and the constraints are upper bounds on the magnitudes of x and y. What exactly do you mean with "the maximization path meets the constraint" ? The steepest descent from my understanding does not usually meet the constraint.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K