I Graph Representation Learning: Question about eigenvector of Laplacian

AI Thread Summary
The discussion centers on the intuitive meaning of eigenvectors of the graph Laplacian matrix, defined as L = D - A, where D is the degree matrix and A is the adjacency matrix. Eigenvectors of the Laplacian are associated with the graph's connectivity and can indicate clusters or communities within the graph. They also reflect how the graph can be partitioned, with smaller eigenvalues suggesting more tightly connected components. The conversation encourages further exploration of related topics, such as the eigenvalues of the adjacency matrix, which describe closed walks on the graph. Overall, understanding these concepts is crucial for applying deep learning techniques to graph networks.
Master1022
Messages
590
Reaction score
116
TL;DR Summary
What does the eigenvector of the laplacian matrix actually represent?
Hi,

I was reading the following book about applying deep learning to graph networks: link. In chapter 2 (page 22), they introduce the graph Laplacian matrix ##L##:
L = D - A
where ##D## is the degree matrix (it is diagonal) and ##A## is the adjacency matrix.

Question:
What does an eigenvector of a Laplacian graph actually represent on an intuitive level?

Also, I apologize if this is the wrong forum - should I have posted elsewhere?

Thanks in advance.
 
Mathematics news on Phys.org
If you haven't found the answer to your question, please see this thread. It talks about the fact that the eigenvalues of the adjacency matrix describe closed walks on the graph, and much more.

You can find other results, searching, for instance, for "graph Laplacian matrix eigenvalues " on SearchOnMath.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top