MHB Graph the function y=-1/2[cos(x+pi)+cos(x-pi)] and make a conjecture

AI Thread Summary
The function y=-1/2[cos(x+pi)+cos(x-pi)] simplifies to y=cos(x), leading to the conjecture that the graph represents a cosine curve. A conjecture is defined as a statement believed to be true, and in this case, it relates to the graph's behavior. The graph reflects the basic cosine curve over the x-axis, confirming that y=-cos(x) is a valid conjecture. Basic trigonometric identities were used to support this conclusion. The discussion emphasizes understanding both the function and the concept of a conjecture in mathematical analysis.
Elissa89
Messages
52
Reaction score
0
I don't even know what a conjecture is

y=-1/2[cos(x+pi)+cos(x-pi)]
 
Mathematics news on Phys.org
Elissa89 said:
I don't even know what a conjecture is

y=-1/2[cos(x+pi)+cos(x-pi)]
A conjecture is something that you think might be true.

We know that $cos(x+\pi)$ = $cos(x-\pi)$
so $y=-\frac{1}{2}[2cos(x+\pi)] = -cos(x+\pi)$
also, since we know that $cos(x+\pi) = -cos(x)$ we would have $y=cos(x)$

so maybe that is supposed to be the conjecture, that $y=cos(x)$
 
Last edited:
Elissa89 said:
I don't even know what a conjecture is

y=-1/2[cos(x+pi)+cos(x-pi)]

https://en.wikipedia.org/wiki/Conjecture

The directions in the title of your post say to graph the function and make a conjecture based on what you see in the graph.

Note the graph of $y$ shows the basic cosine curve reflected over the x-axis ... in other words, one could make a conjecture that $y=-\cos{x}$.

David went a step further and proved the conjecture using basic identities.

[DESMOS]advanced: {"version":7,"graph":{"xAxisStep":1.5707963267948966,"yAxisStep":1,"squareAxes":false,"viewport":{"xmin":-6.564569536423841,"ymin":-2.039999999999999,"xmax":6.435430463576159,"ymax":1.9600000000000009}},"expressions":{"list":[{"type":"expression","id":"graph1","color":"#2d70b3","latex":"y=\\frac{1}{2}\\left(\\cos\\left(x+\\pi\\right)+\\cos\\left(x-\\pi\\right)\\right)"},{"type":"expression","id":"2","color":"#388c46"}]}}[/DESMOS]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
5
Views
1K
Replies
5
Views
2K
Replies
1
Views
1K
Back
Top