Graphs with N Nodes: Proving Cliques and Anti-Cliques

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Graph Nodes
Click For Summary
SUMMARY

The discussion focuses on proving that every graph with \( n \) nodes contains either a clique or an anti-clique with at least \( \frac{1}{2} \log_2 n \) nodes. Participants suggest applying Ramsey's theory, specifically using the properties of \( R(m,n) \) to establish that \( R(n,n) \leq 2^{2n} \). The conversation highlights the importance of understanding the relationship between cliques and independent sets in graph theory, particularly in small graphs, and clarifies that for graphs with 3 nodes, the existence of cliques or anti-cliques is guaranteed.

PREREQUISITES
  • Understanding of graph theory concepts such as cliques and independent sets.
  • Familiarity with Ramsey's theory and its implications in graph structures.
  • Knowledge of combinatorial mathematics, particularly binomial coefficients.
  • Basic proficiency in logarithmic functions and their properties.
NEXT STEPS
  • Study Ramsey's theorem in depth, focusing on its applications in graph theory.
  • Explore the properties of binomial coefficients and their role in combinatorial proofs.
  • Learn about the implications of clique and independent set sizes in various graph configurations.
  • Investigate further examples of graphs with varying node counts to solidify understanding of cliques and anti-cliques.
USEFUL FOR

This discussion is beneficial for mathematicians, computer scientists, and students studying graph theory, particularly those interested in combinatorial structures and proofs involving cliques and independent sets.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $G$ be a graph. A clique in $G$ is a subgraph in which every two nodes are connected by an edge. An anti-clique, also called an independent set, is a subgraph in which every two nodes are not connected by an edge. Show that every graph with $n$ nodes contains either a clique or an anti-clique with at least $\frac{1}{2} \log_2 n$ nodes.

Could you give me some hints how we could show this?? (Wondering)
 
Physics news on Phys.org
Apply Ramsey's theory. Let $R(m,n)$ be the least integer $s$ where a graph $G$ with $s$ vertices contain either a $m$-clique or an $n$-independent set.

Then, use the properties of $R(\cdot, \cdot)$ to show that $R(n,n) \leq 2^{2n}$.
 
magneto said:
Apply Ramsey's theory. Let $R(m,n)$ be the least integer $s$ where a graph $G$ with $s$ vertices contain either a $m$-clique or an $n$-independent set.

Then, use the properties of $R(\cdot, \cdot)$ to show that $R(n,n) \leq 2^{2n}$.

Could you explain to me further what I have to do?? (Wondering) I got stuck right now...
 
When we have graphs with $3$ nodes:

View attachment 4021

doesn't the graphs have cliques or anti-cliques with at least $2$ nodes??

But $\frac{1}{2} \log_2 3=0.7924 \dots $. So have I done something wrong?? (Wondering)
 

Attachments

  • (Anti-)Clique.png
    (Anti-)Clique.png
    11.1 KB · Views: 152
You want to use (or proof) the result:

\[
R(r,s) \leq \binom{r+s-2}{r-1}.
\]

In your example, $R(2,2) = 2$, in other words, any graph that has $2$ or more vertices, you are going to find a $2$-clique or $2$-independent set. But that's not what the actual statement you want to prove. In the case $\nu = 3$,
the statement in fact promises a $0$-clique or a $0$-independent set, which is vacuously true.
 
magneto said:
You want to use (or proof) the result:

\[
R(r,s) \leq \binom{r+s-2}{r-1}.
\]

In your example, $R(2,2) = 2$, in other words, any graph that has $2$ or more vertices, you are going to find a $2$-clique or $2$-independent set. But that's not what the actual statement you want to prove. In the case $\nu = 3$,
the statement in fact promises a $0$-clique or a $0$-independent set, which is vacuously true.

I got stuck right now... To show that every graph with $n$ nodes contains either a clique or an anti-clique with at least $\frac{1}{2} \log_2 n$ nodes why do we have to show that $R(n, n) \leq 2^{2n}$ ??

$$R(n, n) \leq \binom{n+n-2}{n-1}=\binom{2n-2}{n-1}=\frac{(2(n-1))!}{(n-1)!(n-1)!}$$ How could we continue?? (Wondering)
 
The equation follows from the definition of $R$ and the problem statement.

The inequality follows from the fact that, for $m \geq n$

\[
\binom mn < \sum_k \binom mk = 2^m.
\]
 

Similar threads

Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K