Graduate Gravity in the Thermal Interpretation

Click For Summary
The discussion centers on the implications of the thermal interpretation of quantum mechanics (QM) for the semiclassical Einstein Field Equation (EFE) and the quantization of gravity. It posits that if q-expectations are treated as fundamental "beables," the semiclassical EFE may not need to be viewed as merely an approximation, potentially establishing it as a fundamental equation of gravity. This perspective suggests that the need to quantize gravity could be circumvented within the thermal interpretation framework. However, it is noted that while semiclassical gravity is consistent in this interpretation, the expectation remains that a more fundamental quantum gravity theory is likely necessary for a complete understanding. Ultimately, the discussion highlights the ongoing debate about the relationship between quantum mechanics and gravity.
Messages
49,388
Reaction score
25,424
TL;DR
Does gravity need to be quantized in the thermal interpretation of QM?
This question is mainly for @A. Neumaier, but I post it in public in case others are interested.

The usual reason given for needing to quantize gravity is, heuristically, that, in the presence of quantized stress-energy where there can be a superposition of different stress-energy tensors, there must also be a superposition of different spacetime geometries.

One proposal for avoiding having to do this, at least as an approximation, is the "semiclassical" Einstein Field Equation, where the spacetime geometry is still treated classically, and the source on the RHS of the Einstein Field Equation is the expectation value of the stress-energy tensor. This is normally considered an approximation because in QM expectation values are normally not considered as fundamental.

In the thermal interpretation of QM, however, q-expectations are considered fundamental "beables". That raises an obvious question: would the "semiclassical" EFE even need to be treated as an approximation in the thermal interpretation? Or could it be considered as the fundamental equation of gravity, since the q-expectation of the stress-energy tensor is considered a fundamental "beable" in this interpretation? In short, would this remove the need to quantize gravity in the thermal interpretation?

[1] https://www.physicsforums.com/threads/the-thermal-interpretation-of-quantum-physics.967116/
 
Physics news on Phys.org
PeterDonis said:
In the thermal interpretation of QM, however, q-expectations are considered fundamental "beables". That raises an obvious question: would the "semiclassical" EFE even need to be treated as an approximation in the thermal interpretation? Or could it be considered as the fundamental equation of gravity, since the q-expectation of the stress-energy tensor is considered a fundamental "beable" in this interpretation? In short, would this remove the need to quantize gravity in the thermal interpretation?
Semiclassical gravity is consistent in the thermal interpretation, as is any mixed quantum-classical dynamics following standard patterns. (See Section 7.8 of my book.)

Thus there is no absolute need for quantizing gravity. However, since all other quantum-classical dynamical systems studied are approximations of a more fundamental purely quantum dynamical system, it appears very likely (to me, on the grounds of beauty and uniformity) that the same holds for quantum gravity.
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 59 ·
2
Replies
59
Views
12K
  • · Replies 94 ·
4
Replies
94
Views
14K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 72 ·
3
Replies
72
Views
9K
  • · Replies 25 ·
Replies
25
Views
13K
  • · Replies 10 ·
Replies
10
Views
2K