MHB GRE.al.4 Find the domain of \sqrt{x^2-25}

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Domain
Click For Summary
The domain of the function f(x) = √(x² - 25) is determined by the condition that the expression under the square root must be non-negative, leading to the inequality x² - 25 ≥ 0. This simplifies to |x| ≥ 5, which results in two intervals: x ≤ -5 and x ≥ 5. Therefore, the correct domain is represented as {x | x ≤ -5 or x ≥ 5}. While the discussion briefly touches on the possibility of including complex numbers, the primary focus remains on the real number solutions. The final conclusion is that the domain is restricted to real numbers outside the interval (-5, 5).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{GRE.al.4}$
Find the domain of $f(x)=\sqrt{x^2-25}$
a. $[x\le-5]U[x\ge 5]$
b. x=5
c. $5 \le x$
d. $x\ne 5$
e. $\textit{all reals}$

well just by observation because of the radical I chose c.
but was wondering if imaginary numbers could be part of the domain alto it is not asked for here

https://dl.orangedox.com/QS7cBvdKw55RQUbliE
 
Mathematics news on Phys.org
$x^2-25 \ge 0 \implies x^2 \ge 25 \implies |x| \ge 5$

also, look at the graph of $y = x^2-25$

you want to try another choice?

70B41EC0-A21A-4547-9AAC-5EBC8CFF5C73.png
 
Last edited by a moderator:
oh because x can be $\pm 5$ and outside the graph so a.
 
Since you ask about complex numbers, if all complex numbers are allowed as values for this function then its domain is "all complex numbers".

In order that this question make sense, we must be requiring that the function value, $\sqrt{x^2- 25}$ be a real number. That means that $x^2- 25\ge 0$.

$x^2- 25= (x- 5)(x+ 5)\ge 0$.
The product of two numbers is positive if and only if the two numbers have the same sign- both postive or both negative.

x- 5 and x+ 5 are both positive, x- 5> 0 and x+ 5> 0 so x>5 and x> -5. Of course, if x> 5 then x is also greater than -5 so $x\ge 5$ is a solution.

x- 5 and x+ 5 are both negative, x- 5< 0 and x+ 5< 0 so x< 5 AND x< -5. Of course, if x< -5 then x is also less than 5 so $x\le -5$ is a solution.

The solution set is $\{x| x\le -5 or x\ge 5\}$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K