I have the following question:(adsbygoogle = window.adsbygoogle || []).push({});

Let [itex]n\in\mathbb{Z}^{+}[/itex] st. [itex]n[/itex] is not a perfect square. Let [itex]A=\{x\in\mathbb{Q}|x^{2}<n\}[/itex]. Show that [itex]A[/itex] is bounded in [itex]\mathbb{Q}[/itex] but has neither a greatest lower bound or a least upper bound in [itex]\mathbb{Q}[/itex].

To show that [itex]A[/itex] is bounded in [itex]\mathbb{Q}[/itex] I have to show that it has a infimum and a supremum in [itex]\mathbb{Q}[/itex], right? Not sure where to start...

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Greatest lower bound/least upper bound in Q

**Physics Forums | Science Articles, Homework Help, Discussion**