# Green's function for the wave equation

• I
Gold Member
Hi, I'm reading "Wave Physics" by S. Nettel and in chapter 3 he introduces the Green's function for the 1-dimensional wave equation. Using the separation of variables method he restricts his attention to the spatial component only. Let ##u(x)## be the spatial solution to the wave equation and ##G(x|x_0)## the Green's function. The author now states the following:

Let us now suppose that it is ##u(x)## that is specified at an end point. Then we must choose ##G(x|x_o)## to vanish at that end point.

I don't really understand this connection. Can someone help me ?

Thanks
Ric

Staff Emeritus
Homework Helper
Gold Member
You are looking to write down the solution on the form
$$u(x) = \int G(x|x_0) \kappa(x_0) dx_0 + f(x)$$
where ##\kappa## is the inhomogeneity in your wave equation and ##f(x)## solves the homogeneous wave equation and satisfies your boundary conditions. If ##G(x|x_0)## does not vanish at the boundary, then the integral will generally not be zero there and your function will not satisfy the boundary conditions.

• Cryo
Gold Member
In the book I'm reading there is a slightly different version of the solution: (forget about the ##\frac 1 {\rho}##)

BTW I also do not understand your answer. If, for example, ##k## vanishes at the end point the integral could also be zero and the boundary condition would be verified.

Staff Emeritus
• 