Green's function and the evolution operator

Click For Summary
SUMMARY

The discussion centers on the definition and interpretation of the Green's function, particularly in the context of quantum mechanics and differential operators. The Green's function, denoted as ##\hat{G}(\textbf{r},\textbf{r}_0)##, is established through the equation ##\hat{L}_{\textbf{r}} \hat{G}(\textbf{r},\textbf{r}_0) = \delta(\textbf{r}-\textbf{r}_0)##, where ##\hat{L}_{\textbf{r}}## is a differential operator. The discussion highlights the inconsistency between general definitions of Green's functions and their specific applications in quantum mechanics, particularly regarding the time evolution operator ##\hat{U}(t,t_0)##. The participants emphasize the necessity of a rigorous mathematical foundation for understanding propagators and their applications in solving differential equations.

PREREQUISITES
  • Understanding of differential operators, specifically ##\hat{L}_{\textbf{r}}##.
  • Familiarity with quantum mechanics concepts, including the time evolution operator ##\hat{U}(t,t_0)##.
  • Knowledge of Green's functions and their role in solving differential equations.
  • Basic grasp of Fourier transforms and their application in quantum mechanics.
NEXT STEPS
  • Study the properties of Green's functions in various contexts, including boundary value problems.
  • Learn about the derivation and applications of the time evolution operator ##\hat{U}(t,t_0)## in quantum mechanics.
  • Explore the mathematical foundations of propagators and their physical interpretations in quantum field theory.
  • Investigate the relationship between Green's functions and Fourier transforms in solving differential equations.
USEFUL FOR

Physicists, mathematicians, and students studying quantum mechanics, particularly those interested in the mathematical foundations of quantum dynamics and the application of Green's functions in solving differential equations.

  • #31
Quick correction from my previous derivation: Sign error by me, such that ##\omega = \frac{\hat{H}}{\hbar}##, which for natural unts, ##\omega = \hat{H}##.I will go through the derivation.Equation 17.21:

\begin{equation}

\begin{split}

| \psi_t \rangle &= e^{-\frac{i}{\hbar} \hat{H} (t-\acute{t})} | \psi_{\acute{t}} \rangle

\end{split}

\end{equation}Given:

\begin{equation}

\begin{split}

\omega &= \frac{\hat{H}}{\hbar}

\end{split}

\end{equation}\begin{equation}

\begin{split}

| \psi_t \rangle &= e^{-i \omega (t-\acute{t})} | \psi_{\acute{t}} \rangle

\end{split}

\end{equation}
Which is my version of the time evolution operator, ##\hat{U}(t,\acute{t})##.Equation 17.26:

\begin{equation}

\begin{split}

\left( i\hbar \frac{\partial}{\partial t}-E_j \right ) G_j^{+}(t,\acute{t}) &=\delta(t-\acute{t})

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

G_j^{+}(t,\acute{t})&=-\frac{i}{\hbar} e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t})

\end{split}

\end{equation}Such that:

\begin{equation}

\begin{split}

\left( i\hbar \frac{\partial}{\partial t}-E_j \right ) G_j^{+}(t,\acute{t}) &=\left( i\hbar \frac{\partial}{\partial t}-E_j \right ) \left(-\frac{i}{\hbar} e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)

\\

&=\left( \frac{\partial}{\partial t}+ \frac{i}{\hbar}E_j \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)

\end{split}

\end{equation}And:

\begin{equation}

\begin{split}

\left( \frac{\partial}{\partial t}+ \frac{i}{\hbar}E_j \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=\delta(t-\acute{t})

\\

-i\left( \frac{\partial}{\partial t}+ \frac{i}{\hbar}E_j \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=-i \delta(t-\acute{t})

\\

\left(-i \frac{\partial}{\partial t}- \frac{E_j}{\hbar} \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=-i \delta(t-\acute{t})

\end{split}

\end{equation}
Given ##\omega_j=\frac{E_j}{\hbar}## and ##\partial_t = \frac{\partial}{\partial t}##:

\begin{equation}

\begin{split}

\left(-i \partial_t- \omega_j \right ) \left( e^{-i \omega_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=-i \delta(t-\acute{t})

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

e^{-i \omega_j (t-\acute{t})} \theta(t-\acute{t})&=G_j^{+}(t,\acute{t})

\end{split}

\end{equation}Such that:

\begin{equation}

\begin{split}

\left(-i \partial_t- \omega_j \right ) G_j^{+}(t,\acute{t})&=-i \delta(t-\acute{t})

\end{split}

\end{equation}Again, this is the same as my derivation.Equation 17.28:

\begin{equation}

\begin{split}

G^+(\vec{r},t;\vec{\acute{r}},\acute{t})&=-\frac{i}{\hbar}\sum_j e^{-\frac{i}{\hbar}E_j (t-\acute{t})}\theta(t-\acute{t})u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\end{split}

\end{equation}Equation 17.31:

\begin{equation}

\begin{split}

\left(i\hbar \frac{\partial}{\partial t} -\hat{H} \right) G^+(\vec{r},t;\vec{\acute{r}},\acute{t})&=-\frac{i}{\hbar}\sum_j \left(i\hbar \frac{\partial}{\partial t} -E_j \right) G_j^+(t-\acute{t}) u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\\

&=\sum_j \delta(t-\acute{t})u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\\

&=\delta(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=\delta^4(\vec{x}-\vec{\acute{x}})

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

\sum_j u_j(\vec{r}) u_j^*(\vec{\acute{r}})&=\delta^3(\vec{r}-\vec{\acute{r}})

\end{split}

\end{equation}And:

\begin{equation}

\begin{split}

G^+(\vec{r},t;\vec{\acute{r}},\acute{t})&=\sum_j G_j^+(\vec{r},t;\vec{\acute{r}},\acute{t})

\\

&=\sum_j G_j^+(t-\acute{t}) u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\\

&=\sum_j G_j^+(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=G^+(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=-\frac{i}{\hbar} e^{-\frac{i}{\hbar} E (t-\acute{t})} \theta(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=-\frac{i}{\hbar} e^{-i \omega (t-\acute{t})} \theta(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\end{split}

\end{equation}Which is the SAME expression for the Green function that I derived (assuming some algebra with ##i## and ##\hbar##, which I demonstrate above). In other words, the result is the same. Trying to distinguish my derivation from the one in the paper by asserting one involves position and the other energy in order to accept one and not the other is simply not tenable.
 
Physics news on Phys.org
  • #32
redtree said:
Quick correction from my previous derivation: Sign error by me, such that ω=^Hℏω=H^ℏ\omega = \frac{\hat{H}}{\hbar}, which for natural unts, ω=\hat{H}.
Regardless of the sign, it is simpy not true. It is only true on a degenerate subspace of the Hamiltonian, which you generally do not have.
 
  • #33
redtree said:
Trying to distinguish my derivation from the one in the paper by asserting one involves position and the other energy in order to accept one and not the other is simply not tenable.
It is very tenable. You get different results and your's is wrong. Not only are you assuming that the position eigenstates are energy eigenstates (they are not), you are also asserting that they all have the same energy.. The Green's function for ##t > t'## is not proportional to a delta function in space.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K