Undergrad Green's function and the evolution operator

Click For Summary
The discussion centers on the definition and interpretation of the Green's function in the context of differential operators and quantum mechanics. It highlights a contradiction between two definitions of the Green's function, emphasizing that the first definition is general while the latter pertains specifically to quantum time evolution. The Green's function is described as a propagator that indicates the probability of a particle transitioning between points over time. The conversation also touches on the mathematical foundations of the propagator, stressing the need for consistency across applications of Green's functions. Ultimately, the discussion seeks clarity on how these definitions relate to solving differential equations and the implications for quantum mechanics.
  • #31
Quick correction from my previous derivation: Sign error by me, such that ##\omega = \frac{\hat{H}}{\hbar}##, which for natural unts, ##\omega = \hat{H}##.I will go through the derivation.Equation 17.21:

\begin{equation}

\begin{split}

| \psi_t \rangle &= e^{-\frac{i}{\hbar} \hat{H} (t-\acute{t})} | \psi_{\acute{t}} \rangle

\end{split}

\end{equation}Given:

\begin{equation}

\begin{split}

\omega &= \frac{\hat{H}}{\hbar}

\end{split}

\end{equation}\begin{equation}

\begin{split}

| \psi_t \rangle &= e^{-i \omega (t-\acute{t})} | \psi_{\acute{t}} \rangle

\end{split}

\end{equation}
Which is my version of the time evolution operator, ##\hat{U}(t,\acute{t})##.Equation 17.26:

\begin{equation}

\begin{split}

\left( i\hbar \frac{\partial}{\partial t}-E_j \right ) G_j^{+}(t,\acute{t}) &=\delta(t-\acute{t})

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

G_j^{+}(t,\acute{t})&=-\frac{i}{\hbar} e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t})

\end{split}

\end{equation}Such that:

\begin{equation}

\begin{split}

\left( i\hbar \frac{\partial}{\partial t}-E_j \right ) G_j^{+}(t,\acute{t}) &=\left( i\hbar \frac{\partial}{\partial t}-E_j \right ) \left(-\frac{i}{\hbar} e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)

\\

&=\left( \frac{\partial}{\partial t}+ \frac{i}{\hbar}E_j \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)

\end{split}

\end{equation}And:

\begin{equation}

\begin{split}

\left( \frac{\partial}{\partial t}+ \frac{i}{\hbar}E_j \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=\delta(t-\acute{t})

\\

-i\left( \frac{\partial}{\partial t}+ \frac{i}{\hbar}E_j \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=-i \delta(t-\acute{t})

\\

\left(-i \frac{\partial}{\partial t}- \frac{E_j}{\hbar} \right ) \left( e^{-\frac{i}{\hbar} E_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=-i \delta(t-\acute{t})

\end{split}

\end{equation}
Given ##\omega_j=\frac{E_j}{\hbar}## and ##\partial_t = \frac{\partial}{\partial t}##:

\begin{equation}

\begin{split}

\left(-i \partial_t- \omega_j \right ) \left( e^{-i \omega_j (t-\acute{t})} \theta(t-\acute{t}) \right)&=-i \delta(t-\acute{t})

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

e^{-i \omega_j (t-\acute{t})} \theta(t-\acute{t})&=G_j^{+}(t,\acute{t})

\end{split}

\end{equation}Such that:

\begin{equation}

\begin{split}

\left(-i \partial_t- \omega_j \right ) G_j^{+}(t,\acute{t})&=-i \delta(t-\acute{t})

\end{split}

\end{equation}Again, this is the same as my derivation.Equation 17.28:

\begin{equation}

\begin{split}

G^+(\vec{r},t;\vec{\acute{r}},\acute{t})&=-\frac{i}{\hbar}\sum_j e^{-\frac{i}{\hbar}E_j (t-\acute{t})}\theta(t-\acute{t})u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\end{split}

\end{equation}Equation 17.31:

\begin{equation}

\begin{split}

\left(i\hbar \frac{\partial}{\partial t} -\hat{H} \right) G^+(\vec{r},t;\vec{\acute{r}},\acute{t})&=-\frac{i}{\hbar}\sum_j \left(i\hbar \frac{\partial}{\partial t} -E_j \right) G_j^+(t-\acute{t}) u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\\

&=\sum_j \delta(t-\acute{t})u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\\

&=\delta(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=\delta^4(\vec{x}-\vec{\acute{x}})

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

\sum_j u_j(\vec{r}) u_j^*(\vec{\acute{r}})&=\delta^3(\vec{r}-\vec{\acute{r}})

\end{split}

\end{equation}And:

\begin{equation}

\begin{split}

G^+(\vec{r},t;\vec{\acute{r}},\acute{t})&=\sum_j G_j^+(\vec{r},t;\vec{\acute{r}},\acute{t})

\\

&=\sum_j G_j^+(t-\acute{t}) u_j(\vec{r}) u_j^*(\vec{\acute{r}})

\\

&=\sum_j G_j^+(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=G^+(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=-\frac{i}{\hbar} e^{-\frac{i}{\hbar} E (t-\acute{t})} \theta(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\\

&=-\frac{i}{\hbar} e^{-i \omega (t-\acute{t})} \theta(t-\acute{t})\delta^3(\vec{r}-\vec{\acute{r}})

\end{split}

\end{equation}Which is the SAME expression for the Green function that I derived (assuming some algebra with ##i## and ##\hbar##, which I demonstrate above). In other words, the result is the same. Trying to distinguish my derivation from the one in the paper by asserting one involves position and the other energy in order to accept one and not the other is simply not tenable.
 
Physics news on Phys.org
  • #32
redtree said:
Quick correction from my previous derivation: Sign error by me, such that ω=^Hℏω=H^ℏ\omega = \frac{\hat{H}}{\hbar}, which for natural unts, ω=\hat{H}.
Regardless of the sign, it is simpy not true. It is only true on a degenerate subspace of the Hamiltonian, which you generally do not have.
 
  • #33
redtree said:
Trying to distinguish my derivation from the one in the paper by asserting one involves position and the other energy in order to accept one and not the other is simply not tenable.
It is very tenable. You get different results and your's is wrong. Not only are you assuming that the position eigenstates are energy eigenstates (they are not), you are also asserting that they all have the same energy.. The Green's function for ##t > t'## is not proportional to a delta function in space.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K