MHB Group homomorphism and subgroups

  • Thread starter Thread starter alberto1
  • Start date Start date
  • Tags Tags
    Group
alberto1
Messages
1
Reaction score
0
Hi,
I am having trouble with this question so it would be really nice if anyone could provide some help.

Let $$\phi: G \to G'$$ be a group homomorphism, and let $$H' \le G'$$ be a subgroup of G'.

a) Show that $$H=\phi^{-1}(H')$$ is a subgroup of G.
b) Now suppose H’ is a normal subgroup of G’. Does it follow that $$H=\phi^{-1}(H’)$$ is a normal subgroup of G?
c) Now suppose phi is surjective (but not that H’ is normal). Show that there is a bijective correspondence between $$K’ \le G’$$ containing H' and $$K \le G$$ containing H.

Thanks
 
Physics news on Phys.org
\phi : G \to G'
is a homomorphism
which means for every g_1,g_2 \in G
\phi(g_1*_{G} g_2 ) = \phi (g_1 ) *_{G'} \phi(g_2)

H' is a subgroup of G'
H=\phi ^{-1} ( H' )

the subgroup text is if h_1,h_2 \in H \; then h_1h_2^{-1} \in H
so let h_1 , h_2 \in H then there exist h_1 ' , h_2 ' \in H '
such that \phi^{-1} (h_1 ' ) = h_1 , \phi^{-1} (h_2 ' ) = h_2
\phi(h_1 ) = h_1 ' , \phi(h_2 ) = h_2 '
\phi(h_1h_2^{-1}) = \phi(h_1)(\phi(h_2))^{-1} = h_1' (h_2')^{-1} \in H
h_1h_2^{-1} \in \phi^{-1}(H) = H
the proof ends
note that from the homomorphism
\phi(h^{-1}) = ( \phi( h ) )^{-1}
 
Alberto said:
Hi,
I am having trouble with this question so it would be really nice if anyone could provide some help.

Let $$\phi: G \to G'$$ be a group homomorphism, and let $$H' \le G'$$ be a subgroup of G'.

a) Show that $$H=\phi^{-1}(H')$$ is a subgroup of G.
b) Now suppose H’ is a normal subgroup of G’. Does it follow that $$H=\phi^{-1}(H’)$$ is a normal subgroup of G?
c) Now suppose phi is surjective (but not that H’ is normal). Show that there is a bijective correspondence between $$K’ \le G’$$ containing H' and $$K \le G$$ containing H.

Thanks
Well.. I think you should submit your attempt along with the question too. That way you get help exactly where you are stuck and you get a lot more people willing to help you.
part a) Apply the "One step subgroup test". Let $a,b \in \phi^{-1}(H{'})$. Then $\phi (a), \phi (b) \in H{'}$. Thus $\phi (a), \phi (b^{-1}) \in H{'}$ (why?)
thus $\phi(ab^{-1}) \in H{'}$ and hence $ab^{-1} \in \phi ^{-1} (H{'})$. So by the one step subgroup test we have $\phi ^{-1} (H{'})$ is a subgroup of $G$.

For part b) and c) please show your attempt. If you are totally clueless on something that's fine too but do mention it.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top