Hand Computing: Evaluate $\sum_{k=1}^{2013}f(k/2014)$

  • Context: MHB 
  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Computation hand
Click For Summary

Discussion Overview

The discussion revolves around evaluating the sum $\sum_{k=1}^{2013} f(k/2014)$, where the function $f(t)$ is defined as $f(t) := \frac{7^t}{7^t + \sqrt{7}}$. Participants are asked to perform this evaluation without computational tools.

Discussion Character

  • Homework-related

Main Points Raised

  • Post 1 introduces the function $f(t)$ and the sum to be evaluated, requesting a detailed solution.
  • Post 2 reiterates the same function and sum, also asking for a solution without computational aids.
  • Post 3 confirms the correctness of an earlier statement, though it is unclear what specific claim is being affirmed.
  • Post 4 suggests that a previous response is very close to being correct, indicating some uncertainty or minor error.
  • Post 5 acknowledges a mistake, but does not specify the nature of the error or its implications for the evaluation.

Areas of Agreement / Disagreement

There appears to be some agreement on the definition of the function and the task at hand, but the discussion includes corrections and acknowledgments of mistakes, indicating that the evaluation remains unresolved.

Contextual Notes

Participants have not provided a complete solution or detailed steps for the evaluation, and there may be assumptions or definitions that are not fully articulated.

magneto1
Messages
100
Reaction score
0
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)
 
Physics news on Phys.org
magneto said:
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)

Notice that
$$f\left(\frac{k}{2014}\right)+f\left(\frac{2014-k}{2014}\right)=1$$
Hence, the sum is:
$$\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right)=1006+f\left(\frac{1007}{2014}\right)=1006+\frac{\sqrt{7}}{2\sqrt{7}}=\boxed{1006.5}$$
 
That's correct.
 
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]
 
lfdahl said:
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]

Very close.

Consider the pair of $\sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}$ when $k=1007$.
 
Oh, my mistake!

\[\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1006}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}+f\left ( \frac{1007}{2014} \right )=^* \sum_{k=1}^{1006} \left \{ 1 \right \}+\frac{1}{2}=\frac{1}{2}2013\]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K