MHB Hand Computing: Evaluate $\sum_{k=1}^{2013}f(k/2014)$

  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Computation hand
AI Thread Summary
The discussion centers on evaluating the sum $\sum_{k=1}^{2013} f(k/2014)$ where $f(t) = \frac{7^t}{7^t + \sqrt{7}}$. Participants are tasked with calculating this sum without computational tools. The function $f(t)$ is analyzed for its behavior and properties, particularly its symmetry. The evaluation involves recognizing patterns in the function's output and leveraging the properties of the sum. Ultimately, the goal is to derive a simplified expression for the sum based on the defined function.
magneto1
Messages
100
Reaction score
0
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)
 
Mathematics news on Phys.org
magneto said:
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)

Notice that
$$f\left(\frac{k}{2014}\right)+f\left(\frac{2014-k}{2014}\right)=1$$
Hence, the sum is:
$$\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right)=1006+f\left(\frac{1007}{2014}\right)=1006+\frac{\sqrt{7}}{2\sqrt{7}}=\boxed{1006.5}$$
 
That's correct.
 
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]
 
lfdahl said:
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]

Very close.

Consider the pair of $\sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}$ when $k=1007$.
 
Oh, my mistake!

\[\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1006}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}+f\left ( \frac{1007}{2014} \right )=^* \sum_{k=1}^{1006} \left \{ 1 \right \}+\frac{1}{2}=\frac{1}{2}2013\]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top