MHB Hand Computing: Evaluate $\sum_{k=1}^{2013}f(k/2014)$

  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Computation hand
Click For Summary
The discussion centers on evaluating the sum $\sum_{k=1}^{2013} f(k/2014)$ where $f(t) = \frac{7^t}{7^t + \sqrt{7}}$. Participants are tasked with calculating this sum without computational tools. The function $f(t)$ is analyzed for its behavior and properties, particularly its symmetry. The evaluation involves recognizing patterns in the function's output and leveraging the properties of the sum. Ultimately, the goal is to derive a simplified expression for the sum based on the defined function.
magneto1
Messages
100
Reaction score
0
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)
 
Mathematics news on Phys.org
magneto said:
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)

Notice that
$$f\left(\frac{k}{2014}\right)+f\left(\frac{2014-k}{2014}\right)=1$$
Hence, the sum is:
$$\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right)=1006+f\left(\frac{1007}{2014}\right)=1006+\frac{\sqrt{7}}{2\sqrt{7}}=\boxed{1006.5}$$
 
That's correct.
 
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]
 
lfdahl said:
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]

Very close.

Consider the pair of $\sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}$ when $k=1007$.
 
Oh, my mistake!

\[\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1006}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}+f\left ( \frac{1007}{2014} \right )=^* \sum_{k=1}^{1006} \left \{ 1 \right \}+\frac{1}{2}=\frac{1}{2}2013\]
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
2K