Hand Computing: Evaluate $\sum_{k=1}^{2013}f(k/2014)$

  • Context: MHB 
  • Thread starter Thread starter magneto1
  • Start date Start date
  • Tags Tags
    Computation hand
Click For Summary
SUMMARY

The forum discussion focuses on evaluating the sum $\sum_{k=1}^{2013} f(k/2014)$ where the function is defined as $f(t) = \frac{7^t}{7^t + \sqrt{7}}$. Participants detail the steps to compute this sum analytically, emphasizing the importance of understanding the behavior of the function as $t$ approaches 0 and 1. The evaluation reveals that the sum converges to a specific value based on the properties of the function and its symmetry.

PREREQUISITES
  • Understanding of limits and continuity in calculus
  • Familiarity with summation notation and series
  • Knowledge of exponential functions and their properties
  • Basic skills in algebraic manipulation and simplification
NEXT STEPS
  • Explore the properties of exponential functions in detail
  • Learn about convergence of series and their evaluations
  • Study the concept of symmetry in mathematical functions
  • Investigate advanced summation techniques and their applications
USEFUL FOR

Mathematics students, educators, and anyone interested in analytical methods for evaluating series and functions without computational tools.

magneto1
Messages
100
Reaction score
0
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)
 
Physics news on Phys.org
magneto said:
Define:
\[
f(t) := \frac{7^t}{7^t + \sqrt{7}}.
\]
Without the aid of a computer or calculator, evaluate:
\[
\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right).
\]
(Please show the work.)

Notice that
$$f\left(\frac{k}{2014}\right)+f\left(\frac{2014-k}{2014}\right)=1$$
Hence, the sum is:
$$\sum_{k=1}^{2013} f \left( \frac{k}{2014} \right)=1006+f\left(\frac{1007}{2014}\right)=1006+\frac{\sqrt{7}}{2\sqrt{7}}=\boxed{1006.5}$$
 
That's correct.
 
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]
 
lfdahl said:
$$\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}=^* \sum_{k=1}^{1007}1=1007$$

\[(*). \;\;\; f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right )=\frac{7^{\frac{k}{2014}}}{7^{\frac{k}{2014}}+7^{\frac{1}{2}}}+\frac{7^{\frac{2014-k}{2014}}}{7^{\frac{2014-k}{2014}}+7^{\frac{1}{2}}}\\\\ =\frac{7^{\frac{k}{2014}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{1}{2} }\right )+7^{\frac{2014-k}{2014}}\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )}{\left ( 7^{\frac{k}{2014}}+7^\frac{1}{2} \right )\left ( 7^{\frac{2014-k}{2014}}+7^\frac{1}{2} \right )} \\\\ =\frac{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}{14 + 7^{\frac{1}{2}}\left ( 7^{\frac{2014-k}{2014}}+7^{\frac{k}{2014}}\right )}=1\]

Very close.

Consider the pair of $\sum_{k=1}^{1007}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}$ when $k=1007$.
 
Oh, my mistake!

\[\sum_{k=1}^{2013}f\left ( \frac{k}{2014} \right )= \sum_{k=1}^{1006}\left \{ f\left ( \frac{k}{2014} \right )+f\left ( \frac{2014-k}{2014} \right ) \right \}+f\left ( \frac{1007}{2014} \right )=^* \sum_{k=1}^{1006} \left \{ 1 \right \}+\frac{1}{2}=\frac{1}{2}2013\]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K