Hanging mass on a massless pulley

AI Thread Summary
The discussion revolves around the dynamics of two blocks connected by a massless pulley, focusing on the equations of motion for each block. The user questions why assuming the net force (Fnet) for the hanging block (mass 2) is negative yields the correct answer, while setting the forces of friction equal does not. It highlights the importance of consistent sign conventions for acceleration when analyzing the system, as both blocks share the same acceleration magnitude but may differ in direction. Additionally, the user seeks clarification on how tension and weight can have different values in this scenario, especially when considering the impact of fixing mass 1 to the table. The conversation emphasizes understanding the relationship between forces acting on each block in a pulley system.
kasnay
Messages
10
Reaction score
1
Homework Statement
A 3.5kg block is on a tabletop and is attached by a string to hanging block of mass 2.8 kg. The blocks are released from rest and allowed to move freely. If the table has a coefficient of friction of 0.4

A) Find the Acceleration
Relevant Equations
fnet x and fnet y
I have a conceptual question about this problem.
I can write the 3.5 kg block equation as Fnet(block 1)=(Force of tension)-(Force of friction)=m1a
I can write the 2.8 kg block as Fnet(block 2)=(Force of tension)-(Force of gravity2)=m2a

My question is this
If I set the forces of friction equal I get the wrong answer. However If I assume the fnet of block 2 is negative (because its going to fall) I get the correct answer.
Why do I need to assume the second block fnet is negative? Shouldnt the math already account for what needs to happen?
 
Physics news on Phys.org
You used the same symbol ##a## for the acceleration of both blocks. That means you are assuming the two blocks have the same acceleration - including the sign of their acceleration. If you take the positive direction for block 1 to be in the direction of the tension force acting on block 1, then what must be the positive direction for block 2 (downward or upward)?
 
kasnay said:
I can write the 2.8 kg block as Fnet(block 2)=(Force of tension)-(Force of gravity2)=m2a

My question is this
If I set the forces of friction equal I get the wrong answer.
How can tension and weight of mass 2 have different values?
How those two compare if you screw mass 1 to the table?

You mention forces of friction, but there is only one, if mass 2 is freely hanging from the pulley.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top