Mathematica Hard mathematical induction question

Click For Summary
SUMMARY

The discussion focuses on proving the mathematical induction statement: (n+1)(n+2)...(2n-1)2n = 2^n[1x3x...x(2n-1)] for all integers n ≥ 1. The proof begins with the base case for n = 1, confirming that both sides equal 2. The inductive step assumes the statement holds for n = k and demonstrates it for n = k + 1, ultimately validating the statement for all positive integers n. Participants emphasize the importance of understanding the assumption and encourage experimentation with the proof process to grasp underlying concepts.

PREREQUISITES
  • Understanding of mathematical induction principles
  • Familiarity with factorial notation and products
  • Basic algebraic manipulation skills
  • Knowledge of sequences and series
NEXT STEPS
  • Study the principles of mathematical induction in detail
  • Explore examples of mathematical proofs using induction
  • Learn about combinatorial proofs and their applications
  • Investigate the role of assumptions in mathematical reasoning
USEFUL FOR

Students of mathematics, educators teaching proof techniques, and anyone interested in deepening their understanding of mathematical induction and proof strategies.

ZOMGbirdy
Messages
2
Reaction score
0
Hi everyone, I have been trying to do this induction question... but can't seem to understand how to do it.

Prove by induction that, for all integers n is greater than or equal to 1,

(n+1)(n+2)...(2n-1)2n = 2^n[1x3x...x(2n-1)]

This is what someone else has given as the answer:

For n = 1
LHS = (1 + 1) = 2
RHS = 21 = 2
LHS=RHS hence statement is true for n = 1
Assume the statement is true for n = k
(k + 1)(k + 2)...(2k - 1)2k = 2k[1 x 3 x ... x (2k - 1)]
Required to prove statement is true for n = k + 1
(k + 2)(k + 3)...(2k + 1)(2k + 2) = 2k + 1[1 x 3 x ... x (2k + 1)]
LHS = (k + 2)(k + 3)...(2k + 1)(2k + 2)
= 2(k + 1)(k + 2)(k + 3)...2k(2k + 1)
= 2(2k + 1)2k[1 x 3 x ... x (2k - 1)] by assumption
= 2k + 1[1 x 3 x ... x (2k - 1) x (2k + 1)]
= RHS
If the statement is true for n = k, it is true for n = k + 1
Since the statement is true for n = 1, it is true for all positive integers n by induction.

I think I understand everything up until he actually makes the assumption. I don't understand the assumption and what he is actually subbing into the assumption.
 
Physics news on Phys.org
(k+1)(k+2)(k+3)...(2k-1)2k = 2k[1x3x5...x(2k-1)] = P(k)
... assumed true. (note: you left off the power?)

(k+2)(k+3)(k+4)...(2k+1)2(k+1) = 2(k+1)[1x3x5x...x(2k+1)] = P(k+1)
... needs to be proved. Kinda suggestive isn't it?

Consider:
Is the LHS of P(k+1) the same as the LHS of P(k)/(k+1) ?

The form of the LHS of P(n) is
f1f2f3...fm=Pm(k)

where
fi = k+i

but for i=m, fm = k+m = 2k(2k-1)
so what is fm-1 ?
 
Sorry, didn't realize the powers weren't copied properly.

Thanks for your reply, yea I get it now - I was looking at it from the wrong perspective.
 
No worries - when you are shown example proofs, they are all so very polished and clever. What you should realize is that these are the finished proofs - that is not how they were arrived at.

Don't be frightened to play around with the statements you are asked to prove. Mess about with them - figure out how they work. Look for patterns. Ask what these statements are telling you. This part is quite untidy and inelegant but you'll learn more that way.

Have fun :)
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
4K
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K