1.Question.(adsbygoogle = window.adsbygoogle || []).push({});

the unnormalized excited state wavefuction of the H atom is:

[tex]\psi = ( 2 - r/a_0 ) e^a[/tex]

where a = [tex]-r/a_0[/tex]

Normalize the function to one.

2. My attempts.

I tried 'integrating' the psi*psi, i.e. I squared the above wavefuction.

[tex]N^2\int_{0}^{\infty} R^2e^{2a}\int_{0}^{\pi}sin \theta d\theta\int_{0}^{2\pi}d\phi =1[/tex]

From here, I got confused with the examples. The second and third integrations were obviously 2 and [tex]2\pi[/tex], but the first integration I'm getting confused as to what to put as [tex]R^2[/tex] and I'm getting the same answer as the examples because when I done the calculation, the power to which R is the same with every question, which was [tex]a^3_0/4[/tex]

Hence: [tex]a^3_0/4*2*2\pi[/tex] =[tex] 1/N^2[/tex]

Hence I worked out N from this equation, but the answer I got was:

[tex]\psi =(1/\pi a^3_0)^{1/2}e^{-r/a_0}[/tex]

Which is the same as every other damn normalized wavefuction in the book.

I think I'm having trouble actually understanding how [tex]R^2[/tex] is translated from the original wavefuction to the actual integration, hence my immense trouble to working out what R is. Can anyone help with this?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Having trouble with this normalization

**Physics Forums | Science Articles, Homework Help, Discussion**