Help Solve Variance Question with 80 Students

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Variance
Click For Summary
SUMMARY

The discussion revolves around a statistical problem involving 80 students' exam grades, where the goal is to determine the number of additional students, k, whose grades equal the average of the first group. The user initially calculated k as 80, based on the relationship between the standard deviations of the two samples. However, a correction was provided, clarifying that the user was conflating variance with standard deviation in their calculations. The correct approach involves using the formulas for population variance to derive the relationship between the two samples.

PREREQUISITES
  • Understanding of population variance and standard deviation
  • Familiarity with statistical notation and formulas
  • Basic knowledge of sums of squares in statistics
  • Ability to solve algebraic equations involving statistical concepts
NEXT STEPS
  • Review the concept of population variance versus sample variance
  • Learn how to calculate sums of squares for different samples
  • Explore the implications of combining samples on standard deviation
  • Practice solving problems involving standard deviation and variance in statistics
USEFUL FOR

Students, educators, and statisticians who are working with statistical analysis and variance calculations, particularly in educational settings.

Yankel
Messages
390
Reaction score
0
Hello,

Any help with this one would be appreciated.

In a college 80 students are taking the exam in the spring semester. Their grades has a mean and standard deviation.
In the summer semester, k additional students are being tested. All k students get grades which are equal to the average grade of the 80 students from the spring semester. After combining both samples, we get a standard deviation which is half of the standard deviation of the first 80 students. Find k.

I did something, and got k=80, but I am not sure it's correct, would appreciate if anyone can validate my answer.

what I did was to take S1 (the standard deviation before any addition) and I said it is equal to 2*S2 (which is the standard deviation of the two samples together).

Then I realized, that since all observations in the second sample are equal to the mean, than the numerator is equal in both parts of the equations (apart from the 2 of course). Moreover, the sums of deviance are equal.

Then I solved the equation to get k=80

P.S In this context, when I say variance I mean the formula in which we divide by n, not by n-1.
 
Physics news on Phys.org
Yankel said:
Hello,

Any help with this one would be appreciated.

In a college 80 students are taking the exam in the spring semester. Their grades has a mean and standard deviation.
In the summer semester, k additional students are being tested. All k students get grades which are equal to the average grade of the 80 students from the spring semester. After combining both samples, we get a standard deviation which is half of the standard deviation of the first 80 students. Find k.

I did something, and got k=80, but I am not sure it's correct, would appreciate if anyone can validate my answer.

what I did was to take S1 (the standard deviation before any addition) and I said it is equal to 2*S2 (which is the standard deviation of the two samples together).

Then I realized, that since all observations in the second sample are equal to the mean, than the numerator is equal in both parts of the equations (apart from the 2 of course). Moreover, the sums of deviance are equal.

Then I solved the equation to get k=80

P.S In this context, when I say variance I mean the formula in which we divide by n, not by n-1.

Hi Yankel! :)

What you have is pretty close!

The one oversight is that when you say that the numerator is equal, you are talking about the variance instead of the standard deviation.
In formula form:

$\sigma_1^2 = \dfrac{{SS}_1}{80}$

$\sigma_2^2 = \dfrac{{SS}_2}{80 + k} = \dfrac{{SS}_1 + k \cdot 0}{80 + k}$

where ${SS}_1$ is the sum of the squared deviations for the first sample, and ${SS}_2$ is the sum for the complete sample.

P.S.: A variance in which we divide by n is called a population variance, as opposed to a sample variance.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K