MHB Help Solve Variance Question with 80 Students

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Variance
Yankel
Messages
390
Reaction score
0
Hello,

Any help with this one would be appreciated.

In a college 80 students are taking the exam in the spring semester. Their grades has a mean and standard deviation.
In the summer semester, k additional students are being tested. All k students get grades which are equal to the average grade of the 80 students from the spring semester. After combining both samples, we get a standard deviation which is half of the standard deviation of the first 80 students. Find k.

I did something, and got k=80, but I am not sure it's correct, would appreciate if anyone can validate my answer.

what I did was to take S1 (the standard deviation before any addition) and I said it is equal to 2*S2 (which is the standard deviation of the two samples together).

Then I realized, that since all observations in the second sample are equal to the mean, than the numerator is equal in both parts of the equations (apart from the 2 of course). Moreover, the sums of deviance are equal.

Then I solved the equation to get k=80

P.S In this context, when I say variance I mean the formula in which we divide by n, not by n-1.
 
Mathematics news on Phys.org
Yankel said:
Hello,

Any help with this one would be appreciated.

In a college 80 students are taking the exam in the spring semester. Their grades has a mean and standard deviation.
In the summer semester, k additional students are being tested. All k students get grades which are equal to the average grade of the 80 students from the spring semester. After combining both samples, we get a standard deviation which is half of the standard deviation of the first 80 students. Find k.

I did something, and got k=80, but I am not sure it's correct, would appreciate if anyone can validate my answer.

what I did was to take S1 (the standard deviation before any addition) and I said it is equal to 2*S2 (which is the standard deviation of the two samples together).

Then I realized, that since all observations in the second sample are equal to the mean, than the numerator is equal in both parts of the equations (apart from the 2 of course). Moreover, the sums of deviance are equal.

Then I solved the equation to get k=80

P.S In this context, when I say variance I mean the formula in which we divide by n, not by n-1.

Hi Yankel! :)

What you have is pretty close!

The one oversight is that when you say that the numerator is equal, you are talking about the variance instead of the standard deviation.
In formula form:

$\sigma_1^2 = \dfrac{{SS}_1}{80}$

$\sigma_2^2 = \dfrac{{SS}_2}{80 + k} = \dfrac{{SS}_1 + k \cdot 0}{80 + k}$

where ${SS}_1$ is the sum of the squared deviations for the first sample, and ${SS}_2$ is the sum for the complete sample.

P.S.: A variance in which we divide by n is called a population variance, as opposed to a sample variance.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top