Help understanding conditional expectation identity

Click For Summary
SUMMARY

The discussion focuses on the conditional expectation identity in probability theory, specifically the relationship between random variables and their conditional expectations. It defines conditional expectation as the random variable that satisfies integrability and measurability conditions, with particular emphasis on the properties outlined in Definitions 1 and 2. The proof presented utilizes the Tower property and the theorem from Durrett's book, demonstrating how to derive the equality $$\mathbb{E}[\mathbf{1}_B(T)U]=\mathbb{E}[\mathbf{1}_B(T)\mathbb{E}[U\mid S,T]]$$ through the properties of sigma-algebras and measurability.

PREREQUISITES
  • Understanding of probability spaces, specifically the notation ##(\Omega,\mathcal{F},P)##.
  • Familiarity with integrable random variables and the space ##L^1(P)##.
  • Knowledge of sigma-algebras and their properties, particularly ##\sigma(Y)##.
  • Comprehension of the Tower property in conditional expectations.
NEXT STEPS
  • Study the properties of conditional expectation in detail, focusing on the definitions provided in probability theory.
  • Explore the Tower property and its applications in deriving conditional expectations.
  • Review Durrett's book on probability theory for deeper insights into conditional expectations and their proofs.
  • Investigate the implications of measurability in the context of random variables and sigma-algebras.
USEFUL FOR

Mathematicians, statisticians, and students of probability theory who are looking to deepen their understanding of conditional expectations and their applications in various proofs and theorems.

psie
Messages
315
Reaction score
40
TL;DR
I'm reading a proof on conditional probabilities and there is an identity involving conditional expectation which I'm stuck on.
Let ##(\Omega,\mathcal{F},P)## be a probability space, and let us define the conditional expectation ##{\rm E}[X\mid\mathcal{G}]## for integrable random variables ##X:\Omega\to\mathbb{R}##, i.e. ##X\in L^1(P)##, and sub-sigma-algebras ##\mathcal{G}\subseteq\mathcal{F}##.

Definition 1: The conditional expectation ##{\rm E}[X\mid\mathcal{G}]## of ##X## given ##\mathcal{G}## is the random variable ##Z## having the following properties:
(i) ##Z## is integrable, i.e. ##Z\in L^1(P)##.
(ii) ##Z## is (##\mathcal{G},\mathcal{B}(\mathbb{R}))##-measurable.
(iii) For any ##A\in\mathcal{G}## we have $$\int_A Z\,\mathrm dP=\int_A X\,\mathrm dP.$$

Definition 2: If ##X\in L^1(P)## and ##Y:\Omega\to\mathbb{R}## is any random variable, then the conditional expectation of ##X## given ##Y## is defined as $${\rm E}[X\mid Y]:={\rm E}[X\mid\sigma(Y)],$$ where ##\sigma(Y)=\{Y^{-1}(B)\mid B\in\mathcal{B}(\mathbb{R})\}## is the sigma-algebra generated by ##Y##.

If ##\mathcal{G}=\sigma(Y)##, then (iii) in definition 1 says that $${\rm E}[\mathbf{1}_A{\rm E}[X\mid Y]]={\rm E}[\mathbf{1}_AX],\quad \forall A\in\sigma(Y).\tag1$$

Now, in a proof I'm reading currently, there are three random variables ##U,S,T## and the following computation appears in the proof: $$\int_{T^{-1}(B)} U\,\mathrm dP={\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]].$$I simply do not comprehend the last equality, that is ##{\rm E}[\mathbf{1}_B(T)U]={\rm E}[\mathbf{1}_B(T){\rm E}[U\mid S,T]]##. How does this follow from the definitions above and the identity ##(1)##? I'm grateful for any help on this.
 
  • Like
Likes   Reactions: Dale
Physics news on Phys.org
I think I understand the identity in question now. First, from Durret's book, we have

If ##X## is ##\mathcal G##-measurable and ##E|Y|,E|XY|<\infty##, then $$E[XY|\mathcal{G}]=XE[Y|\mathcal{G}].$$

Second, we need the Tower property or the law of the iterated expectation, that is ##E[Y|\mathcal{H}]= E\big[E[Y\mid \mathcal G]\mid \mathcal H\big]##, where ##\mathcal H\subset\mathcal G##.

By the latter property, we have $$E[\mathbf1_B(T)U]=E[E[\mathbf1_B(T)U\mid S,T]].$$ Now, by the theorem in Durret, ##\mathbf1_B(T)=\mathbf1_{T^{-1}(B)}## is ##\sigma(T)##-measurable, and this is a subset of ##\sigma(S,T)=\sigma(\sigma(S)\cup\sigma(T))##. So we can "pull it out", and we are left with $$E[\mathbf1_B(T)U]=E[\mathbf1_B(T)E[U\mid S,T]],$$which is the desired identity.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K