I Help Understanding Equation 3.6 in Covariant Physics by Moataz H. Emam

louvig
Messages
3
Reaction score
0
Screenshot_20230623_170351_Kindle.jpg
I am a physics enthusiast reading Covariant Physics by Moataz H. Emam. In his chapter about Point Particle mechanics there is a transformation equation for a displacement vector. I don't see how he arrived at the final equation 3.6. Is it a chain rule or product rule? Can't seem to figure it out. See attachment. Thanks in advance for any insight.
 
Last edited:
Physics news on Phys.org
It's a bit difficult to read. Also, perhaps needs some context re the author's notation.
 
PeroK said:
It's a bit difficult to read. Also, perhaps needs some context re the author's notation.
Sorry. I tried a screenshot from Kindle instead. I am able to click on it in my smartphone and make it full screen and is legible. The author is showing the covariance of classical mechanics using Einstein index notation. In this instance he is showing the transformation of the position vector which is straightforward and then the transformation of the derivative of the position vector. His point is to show ot transforms like a tensor and is therefore invariant.
 
eq 3.6 has a typo, this index should read ##j## https://web.cortland.edu/moataz.emam/
1687583372935.png


The derivation is straight-forward:
Use that ##\hat{ \textbf{g}}_{i'} = \lambda^k_{i'} \hat{ \textbf{e}}_k ## and ##x^{i'} = \lambda^{i'}_j x^j##.
We get ## d\hat{ \textbf{g}}_{i'} = \hat{ \textbf{e}}_k d \lambda^k_{i'} ## and ##x^{i'} = x^j d\lambda^{i'}_j + \lambda^{i'}_j dx^j##.
And you will obtain the final step in that equation.
 
  • Like
Likes louvig, FactChecker and PeroK
Thank you so much. Makes sense.
 
louvig said:
View attachment 328307I am a physics enthusiast reading Covariant Physics by Moataz H. Emam. In his chapter about Point Particle mechanics there is a transformation equation for a displacement vector. I don't see how he arrived at the final equation 3.6. Is it a chain rule or product rule? Can't seem to figure it out. See attachment. Thanks in advance for any insight.

Everything with primed coordinates was replaced with its transformation. So x’=lambda x and so on.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
29
Views
3K
Replies
9
Views
1K
Replies
12
Views
2K
Replies
13
Views
4K
Replies
5
Views
2K
Replies
1
Views
2K
Replies
40
Views
5K
Back
Top