Help with Expected Value: Get Answers Here!

Click For Summary
The discussion centers on calculating the expected value of a game involving three dice. The initial probability of winning is established as 1/6, leading to an expected value of -4/6 without considering additional winnings. The user calculates 56 possible outcomes, categorizing them based on the frequency of numbers appearing in combinations. They seek clarification on whether the expected gain formula should include the probabilities of winning amounts or if it should account for the initial loss. The conversation highlights the complexity of expected value calculations in probability games.
juantamad
Messages
1
Reaction score
0
Thanks everyone!:)

My Answer:

If I understand it right, since there are 3 dice, the probability that any of the numbers 1 to 6 appears after the throwing the dice is 36/216 which gets simplified to 1/6. so the probability of winning back your dollar is 1/6 and losing it would be 5/6. so intially, i have this expected value >> 1/6- 5/6 = -4/6. Bu then it said there that if you win, you will have additional k dollars depending... so i tried to compute the different winning combinations... if i am correct, then there 56 different possible outcomes.. of those 56, 20 of them composed of numbers without replacement i.e. (a number only appear once in each combination), 30 of them contains those combination which some numbers appear twice i.e {112, 334, 551, ...} and 6 combinations of the numbers appearing three times i.e. {111, 222, ...} so the probability that you get an additional dollar to your winning is 20/56, 2 dollars is 30/56 and 3 dollars is 6/56.

Is it correct to say that the expected gain from playing the game once is equal to E[X] = 1(1/6) - 1 (5/6) + 1(20/56) + 2(30/56) + 3 (6/56)?

Or is it equal to,

E[X] = (1(20/56) + 2(30/56) + 3 (6/56) + 1)(1/6) - 5/6?Please, I just want to be clarified... Thanks a lot!
 
Last edited:
Physics news on Phys.org
I haven't worked out your arithmetic, but my calculation is a net of -17/216.

P(losing)=125/216 net=-1
P(winning 1)=75/216 net=2
P(winning 2)=15/216 net=3
P(winning 3)=1/216 net=4
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K