Help with Monte Carlo Wang-Landau JDoS

  • Thread starter Thread starter UFSJ
  • Start date Start date
  • Tags Tags
    Monte carlo
AI Thread Summary
The discussion focuses on the Wang-Landau algorithm's ability to capture the complete joint density of states for a magnetic perovskite with specific exchange interactions. It highlights that the convergence criterion, based on flatness testing after a set number of Monte Carlo steps, does not guarantee the identification of all possible microstates. A simple example illustrates the vast number of microstates in a 20x20 Ising model, emphasizing the impracticality of sampling all microstates within a reasonable timeframe. The conversation underscores the limitations of the WL algorithm in fully exploring the microstate space. Overall, the Wang-Landau method is efficient but may not encompass every microstate in complex systems.
UFSJ
Messages
13
Reaction score
2
Hi, guys.

I have tried to write a Wang-Landau JDoS algorithm to describe a magnetic perovskite with exchange interactions J1 = 1.66 and J2 = -1.16. Then, I have a simple question: in the WL algorithm, the obtained joint density of states must have all possible E x M microstates? Since the convergence criterion in WL is just the flatness test after some Monte Carlo steps (e.g., n * 10^6), it is not guaranteed that all microstates will be identified, correct???
 
Last edited by a moderator:
Technology news on Phys.org
It is not guaranteed that you constructed all microstates. So if that's what you meant by "[not] all microstates will be identified", then you are correct.

Simple example: A 20x20 Ising model has 2^400= 2.5*10^120 microstates. Generating 10^10 microstates per second (10 per nanosecond) would mean that you would need about 10^100 years to sample all microstates. A 2D WL run for such a model will probably take a couple of seconds, maybe minutes.
 
  • Like
  • Informative
Likes Tom.G and pbuk
Thread 'Star maps using Blender'
Blender just recently dropped a new version, 4.5(with 5.0 on the horizon), and within it was a new feature for which I immediately thought of a use for. The new feature was a .csv importer for Geometry nodes. Geometry nodes are a method of modelling that uses a node tree to create 3D models which offers more flexibility than straight modeling does. The .csv importer node allows you to bring in a .csv file and use the data in it to control aspects of your model. So for example, if you...
I tried a web search "the loss of programming ", and found an article saying that all aspects of writing, developing, and testing software programs will one day all be handled through artificial intelligence. One must wonder then, who is responsible. WHO is responsible for any problems, bugs, deficiencies, or whatever malfunctions which the programs make their users endure? Things may work wrong however the "wrong" happens. AI needs to fix the problems for the users. Any way to...

Similar threads

Back
Top