Henry's question via email about an Inverse Laplace Transform

Click For Summary
SUMMARY

The discussion focuses on solving an Inverse Laplace Transform problem involving the expression $\displaystyle \frac{-3\,\left( s^2 + 200 \right)}{s^2 + 40\,000}$. The key steps include completing the square for the denominator, performing partial fraction decomposition, and applying the Inverse Laplace Transform to derive the final result of $-\frac{3}{2}\,\mathrm{e}^{-10\,t} \,\sin{ \left( 10\,t \right)} - \frac{3}{2}\,\mathrm{e}^{10\,t} \,\sin{ \left( 10\,t \right)}$, which simplifies to $-3\sin{ \left( 10\,t \right)} \cosh{ \left( 10\,t \right)}$. The discussion also highlights the importance of systematic algebraic manipulation in solving complex transforms.

PREREQUISITES
  • Understanding of Inverse Laplace Transforms
  • Familiarity with completing the square technique
  • Knowledge of partial fraction decomposition
  • Basic proficiency in algebraic manipulation
NEXT STEPS
  • Study the properties of Inverse Laplace Transforms in detail
  • Learn advanced techniques for solving differential equations using Laplace Transforms
  • Explore the application of hyperbolic functions in engineering problems
  • Practice solving complex Laplace Transform problems with varying degrees of difficulty
USEFUL FOR

Students, educators, and professionals in engineering and mathematics who are looking to deepen their understanding of Laplace Transforms and their applications in solving differential equations.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5832

It's not entirely obvious what to do with this question, as the denominator does not easily factorise. However, if we realize that $\displaystyle \begin{align*} s^4 + 40\,000 = \left( s^2 \right) ^2 + 200^2 \end{align*}$ it's possible to do a sneaky completion of the square...

$\displaystyle \begin{align*} \left( s^2 \right) ^2 + 200^2 &= \left( s^2 \right) ^2 + 400\,s^2 + 200^2 - 400\,s^2 \\ &= \left( s^2 + 200 \right) ^2 - 400\,s^2 \\ &= \left( s^2 + 200 \right) ^2 - \left( 20\,s \right) ^2 \\ &= \left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) \end{align*}$

and thus it's now possible to perform partial fractions

$\displaystyle \begin{align*} \frac{A\,s + B}{s^2 - 20\,s + 200 } + \frac{C\,s + D}{s^2 + 20\,s + 200} &\equiv \frac{s^2 + 200}{\left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) } \\ \left( A\,s + B \right) \left( s^2 + 20\,s + 200 \right) + \left( C\,s + D \right) \left( s^2 - 20\,s + 200 \right) &\equiv s^2 + 200 \\ \left( A + C \right) \,s ^3 + \left( 20\,A + B - 20\,C + D \right) \, s^2 + \left( 200\,A + 20\,B + 200\,C - 20\,D \right) \, s + 200\,\left( B + D \right) &\equiv s^2 + 200 \end{align*}$

so it can be seen that $\displaystyle \begin{align*} A + C = 0 , \, \, 20\,A + B - 20\,C + D = 1 , \, \, 200\,A + 20\,B + 200\,C - 20\,D = 0 \textrm{ and } B+ D = 1 \end{align*}$, so solving the system gives

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & 0 \\ 20 & 1 & -20 & \phantom{-}1 & 1 \\ 200 & 20 & \phantom{-}200 & -20 & 0 \\ 0 & 1 & \phantom{-}0 & \phantom{-}1 & 1 \end{matrix} \right] \end{align*}$

apply R2 - 20R1 to R2 and R3 - 200R1 to R3 and we have

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & 0 \\ 0 & 1 & -40 & \phantom{-}1 & 1 \\ 0 & 20 & \phantom{-}0 & -20 & 0 \\ 0 & 1 & \phantom{-}0 & \phantom{-}1 & 1 \end{matrix} \right] \end{align*}$

apply R3 - 20R2 to R3 and R4 - R2 to R4 and we have

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 \\ 0 & 1 & -40 & \phantom{-}1 & \phantom{-}1 \\ 0 & 0 & 800 & -40 & -20 \\ 0 & 0 & \phantom{-}40 & \phantom{-}0 & \phantom{-}0 \end{matrix} \right] \end{align*}$

and thus

$\displaystyle \begin{align*} 40\,C = 0 \implies C = 0 \end{align*}$

$\displaystyle \begin{align*} 800\,C - 40\,D = -20 \implies D = \frac{1}{2} \end{align*}$

$\displaystyle \begin{align*} B - 40\,C + D = 1 \implies B = \frac{1}{2} \end{align*}$

$\displaystyle \begin{align*} A + C = 0 \implies A = 0 \end{align*}$

So the partial fraction decomposition is

$\displaystyle \begin{align*} \frac{1}{2\,\left( s^2 - 20\,s + 200 \right) } + \frac{1}{2\,\left( s^2 + 20\,s + 200 \right) } &\equiv \frac{s^2 + 200}{\left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) } \end{align*}$

So moving on to the Inverse Laplace Transform now...

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{-3\,\left( s^2 + 200 \right) }{ s^2 + 40\,000 } \right\} &= -\frac{3}{2}\,\mathcal{L}^{-1} \,\left\{ \frac{1}{s^2 - 20\,s + 200 } + \frac{1}{s^2 + 20\,s + 200 } \right\} \\ &= -\frac{3}{2}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 - 20\,s + \left( -10 \right) ^2 - \left( -10 \right) ^2 + 200 } + \frac{1}{s^2 + 20\,s + 10^2 - 10^2 + 200 } \right\} \\ &= -\frac{3}{2}\,\mathcal{L}^{-1} \, \left\{ \frac{1}{ \left( s - 10 \right) ^2 + 100 } + \frac{1}{ \left( s + 10 \right) ^2 + 100 } \right\} \\ &= -\frac{3}{2}\,\mathrm{e}^{10\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 + 10^2} \right\} - \frac{3}{2}\,\mathrm{e}^{-10\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 + 10^2} \right\} \\ &= -\frac{3}{2}\,\mathrm{e}^{-10\,t} \,\sin{ \left( 10\,t \right) } - \frac{3}{2}\,\mathrm{e}^{10\,t} \,\sin{ \left( 10\,t \right) } \\ &= -3\sin{ \left( 10\,t \right) } \left[ \frac{1}{2}\,\left( \mathrm{e}^{-10\,t} + \mathrm{e}^{10\,t} \right) \right] \\ &= -3\sin{ \left( 10\,t \right) } \cosh{ \left( 10\,t \right) } \end{align*}$
 

Attachments

  • inv laplace.png
    inv laplace.png
    5.1 KB · Views: 137
Physics news on Phys.org
I'm confused. Who is Collin's and Henry and all the others?
 
Joppy said:
I'm confused. Who is Collin's and Henry and all the others?

My students, they email me asking for help, and I direct them here...
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
7K
Replies
2
Views
7K