I consider the band-pass filter of the following configuration (the ##u_m## is a voltage controlled voltage source):
The transfer function is
$$K_1(p)=\hat{U}_o(p) = \frac{p}{RC(p+1/RC)^2} = \frac{\omega_c p}{(p+\omega_c)^2}, \quad \omega_c=\frac{1}{RC}.\qquad (1)$$
Now I connect ##n## such...
I struggle to find an appropriate inverse Laplace transform of the following
$$F(p)= 2^n a^n \frac{p^{n-1}}{(p+a)^{2n}}, \quad a>0.$$
WolframAlpha gives as an answer
$$f(t)= 2^n a^n t^n \frac{_1F_1 (2n;n+1;-at)}{\Gamma(n+1)}, \quad (_1F_1 - \text{confluent hypergeometric function})$$
which...
I used partial fraction method first as:
1/s(s^2+w^2)=A/s+Bs+C/(s^2+w^2)
I found A=1/w^2
B=-1
C=0
1/s(s^2+w^2)=1/sw^2- s/s^2 +w^2
Taking invers laplace i get
1/w2 - coswt
But the ans is not correct kindly help.
Homework Statement
I am given this equation:
and asked to solve using Laplace transforms
The Attempt at a Solution
This is what I did:
This seemed logical to me, I used partial fractions and it stayed pretty simple.
This is what the solutions my prof posted do:
Is my answer equivalent...
Homework Statement
A beam is supported at one end, as shown in the diagram (PROBLEM 11 page 281 of Lea, 159 of the course pack). A block of mass M and length l is placed on the beam, as shown. Write down the known conditions at x = 0. Use the Laplace transform to solve for the beam...
Hi, everyone, the question is as below:
Find the inverse Laplace transform to 1/(350+s) * X(s). 's' is the Laplace variable and 'X(s)' is also a variable.
I inverted 1/(350+s) and X(s) separately and multiplied them together directly. But this seems not giving me the correct answer. Could...
Homework Statement
[/B]
Having a little trouble solving this fractional inverse Laplace were the den. is a irreducible repeated factor
2. The attempt at a solution
tryed at first with partial fractions but that didnt got me anywhere, i know i could use tables at the 2nd fraction i got...