MHB Hermite Function: Writing x^2r in Polynomial Form

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Function
Another1
Messages
39
Reaction score
0
How can $$x^{2r}$$ be written in hermite polynomial form?
 
Mathematics news on Phys.org
Another said:
How can $$x^{2r}$$ be written in hermite polynomial form?
The Hermite polynomials are an orthogonal set so if you are looking for [math]x^{2r} = a_0 H_0(x) + a_1 H_1 (x) + \text{ ...}[/math], then
[math]a_n = \int_{-\infty}^{\infty} x^{2r} \left ( H_n (x) \right ) ^2 e^{-x^2} ~ dx[/math]

That will get you the series term by term. If you want a more general expression you'll likely have to use the generating function to get the [math]\left ( H_n (x) \right )^2[/math] expression.

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top