Graduate Hodge operator on 4th rank tensor

  • Thread starter Thread starter binbagsss
  • Start date Start date
Click For Summary
The discussion centers on the application of the Hodge operator to a 4th rank tensor, specifically focusing on the definition of the Hodge dual and its properties. The main question arises from a computation involving the Hodge dual that appears to yield an incorrect result, prompting a request for clarification on the calculations. Participants discuss the implications of the Hodge dual's properties, particularly the identity involving the Levi-Civita symbol and the resulting contractions. There is also a mention of the relationship between tensors and p-forms, emphasizing the need for antisymmetry in the context of the Hodge operator. The conversation highlights the complexities involved in manipulating these mathematical constructs and the importance of correct notation and formatting.
binbagsss
Messages
1,291
Reaction score
12
I am reading a article that defines a L, R acting Hodge dual denoted by * as:

$$R^{*\alpha \mu \kappa \rho}=\epsilon^{\alpha \mu \nu \lambda}R_{\nu \lambda \kappa \rho},$$

contracting over the first two indices (and similar definition for #*^R^{\alpha \mu \kappa \rho} # contracting over the last two indices.

MAIN QUESTION
They have that #(*)^2=-1. # However I compute the following, can someone please tell me what I am doing wrong? Thanks

$$R*_{ab}^{kp}=\epsilon_{ab\alpha\mu}R^{*\alpha \mu \kappa \rho}

=\epsilon_{ab \alpha \mu} \epsilon^{\alpha \mu \nu \lambda}R_{\nu \lambda \kappa \rho}$$$$=2 \delta^{a}_{\nu} \delta^b_{\lambda}-2\delta^b_{\nu}\delta^a_{\lambda}R_{\nu\lambda \kappa \rho}

=2 R_{ab\kappa \rho}-2_{ba\kappa \rho} = 4 R_{ab \kappa \rho} $$
 
Last edited:
Physics news on Phys.org
When acting on a ##p##-form, and with a Lorentzian signature, ##*^2 = - (-1)^{p(n-p)}##. To show it use the identity ##\epsilon^{a \dots c \dots} \epsilon_{b \dots c \dots} = -p! (n-p)! \delta^{a}_{[b} \dots \delta^{\dots}_{\dots]}##. I think that's what you're trying to do in your working but it's so messy & so many typos I can't follow it.
 
Last edited:
ergospherical said:
When acting on a ##p##-form, and with a Lorentzian signature, ##*^2 = - (-1)^{p(n-p)}##. To show it use the identity ##\epsilon^{a \dots c \dots} \epsilon_{b \dots c \dots} = -p! (n-p)! \delta^{a \dots}_{[b \dots]}##. I think that's what you're trying to do in your working but it's so messy I can't follow it.
Yeh, apologies was just trying to edit the format now- need to familiarise myself with the phantom command for index spacing (just need some chicken first, too much running).

I don't have a background in differential forms, but I think a tensor can only be written as a p-form if it is antisymmetric- so here when you say 'p-form' this is referring to considering the first two indices and last two indices separately, I assume?

I have started with identity:

##\epsilon^{\alpha \mu \nu \lambda}\epsilon_{\beta \gamma \kappa \rho}=-4!\delta^{[\alpha_{\beta}\delta^{\mu}_{\gamma}\delta^{\nu}_{\kappa}\delta^{\lambda}]_{\rho}##And then it can be shown that for two contracted indices:

$$\epsilon^{\alpha \mu \nu \lambda} \epsilon_{\lambda \nu \kappa \rho}=2\delta^{\mu}_{\kappa}\delta^{\alpha}_{\rho}-2\delta^{\alpha}_{\kappa}\delta^{\mu}_{\rho} $$
 
You can Hodge over either pair of the Riemann indices. Since it's effectively a 2-form it might be easier to rename it e.g. ##R_{abcd} \equiv A_{ab}## for fixed ##c##, ##d##. Then\begin{align*}
{(*^2 A)}_{c_1 c_2} = \frac{1}{2} \epsilon_{c_1 c_2 a_1 a_2} {(*A)}^{a_1 a_2} = \frac{1}{4} \epsilon_{c_1 c_2 a_1 a_2} \epsilon^{a_1 a_2 b_1 b_2} A_{b_1 b_2}
\end{align*}Now use ##\epsilon_{c_1 c_2 a_1 a_2} \epsilon^{a_1 a_2 b_1 b_2} = -4 \delta^{b_1}_{[c_1} \dots \delta^{b_2}_{c_2]} = -4(\delta^{b_1}_{c_1} \delta^{b_2}_{c_2} - \delta^{b_1}_{c_2} \delta^{b_2}_{c_1})##
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K