Holmes' question at Yahoo Answers regarding a Cauchy-Euler equation

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the Cauchy-Euler differential equation given by 3t²y'' + 6ty' = 1 for t > 0. Two methods are presented: the first involves transforming the equation into one with constant coefficients using the substitution t = e^x, leading to the general solution y(t) = c₁ + c₂/t + (1/3)ln(t). The second method utilizes the substitution u(t) = dy/dt, resulting in the same general solution. The specific forms for f(t) and g(t) are identified as f(t) = (1/3)ln(t) and g(t) = 1/t.

PREREQUISITES
  • Understanding of Cauchy-Euler equations
  • Familiarity with ordinary differential equations (ODEs)
  • Knowledge of substitution methods in differential equations
  • Proficiency in integration techniques
NEXT STEPS
  • Study the properties and applications of Cauchy-Euler equations
  • Learn about substitution methods for solving ODEs
  • Explore integration techniques for solving differential equations
  • Investigate the historical context of differential equations, focusing on contributions by Leonhard Euler and Augustin Cauchy
USEFUL FOR

Mathematicians, engineering students, and anyone involved in solving differential equations, particularly those interested in Cauchy-Euler equations and their applications in various fields.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Special Second Order Differential Equations help?

Solve the following differential equation

3t^2 y'' + 6ty' = 1 , t > 0

The solution has the form f(t) + A + g(t)B where

f(t) = ?

g(t) = ?

Here is a link to the question:

Special Second Order Differential Equations help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello Holmes,

Method 1:

A linear second order equation that can be expressed in the form:

$\displaystyle ax^2\frac{d^2y}{dx^2}+bx\frac{dy}{dx}+cy=h(x)$,

where $a$, $b$, and $c$ are constants is called a Cauchy-Euler equation.

Although work on this equation was published by Leonhard Euler in 1769 and later by Augustin Cauchy, its solution was known to John Bernoulli prior to 1700. These equations are also called equidimensional equations.

The ODE you cite is a Cauchy-Euler equation, and we may transform it into an equation with constant coefficients by using the substitution $t=e^x$. We are given to solve:

$\displaystyle 3t^2\frac{d^2y}{dt^2}+6t\frac{dy}{dt}=1$

From the suggested substitution, it follows from the chain rule that:

$\displaystyle \frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx}=\frac{dy}{dt}e^x=t\frac{dy}{dt}$

and hence:

(1) $\displaystyle t\frac{dy}{dt}=\frac{dy}{dx}$

Differentiating (1) with respect to $x$, we find from the product rule that:

$\displaystyle \frac{d^2y}{dx^2}=\frac{d}{dx}\left(t\frac{dy}{dt} \right)=\frac{dt}{dx}\frac{dy}{dt}+t\frac{d}{dx} \left(\frac{dy}{dt} \right)$

$\displaystyle \frac{d^2y}{dx^2}=\frac{dy}{dx}+t\frac{d^2y}{dt^2}\frac{dt}{dx}=\frac{dy}{dx}+t\frac{d^2y}{dt^2}e^x$

$\displaystyle \frac{d^2y}{dx^2}=\frac{dy}{dx}+t^2\frac{d^2y}{dt^2}$

and hence:

(2) $\displaystyle t^2\frac{d^2y}{dt^2}=\frac{d^2y}{dx^2}-\frac{dy}{dx}$

Substituting into the given ODE the expressions given in (1) and (2), we obtain:

$\displaystyle 3\left(\frac{d^2y}{dx^2}-\frac{dy}{dx} \right)+6\left(\frac{dy}{dx} \right)=1$

$\displaystyle \frac{d^2y}{dx^2}+\frac{dy}{dx}=\frac{1}{3}$

The characteristic roots are $r=-1,\,0$ and so the solution to the corresponding homogeneous equation is:

$y_h(x)=c_1+c_2e^{-x}$

To ensure linear independence, we must then assume a particular solution of the form:

$y_p(x)=Ax$

And so we compute:

$y_p'(x)=A$

$y_p''(x)=0$

and by substitution, we find:

$\displaystyle 0+A=\frac{1}{3}$ and thus we have:

$\displaystyle y_p(x)=\frac{1}{3}x$ and by superposition, we find:

$\displaystyle y(x)=y_h(x)+y_p(x)=c_1+c_2e^{-x}+\frac{1}{3}x$

Back substituting for $t$, we obtain:

$\displaystyle y(t)=c_1+\frac{c_2}{t}+\frac{1}{3}\ln(t)$

Method 2:

We are given to solve:

$\displaystyle 3t^2\frac{d^2y}{dt^2}+6t\frac{dy}{dt}=1$

Let:

$\displaystyle u(t)=\frac{dy}{dt}\,\therefore\,\frac{du}{dt}= \frac{d^2y}{dt^2}$

and we have:

$\displaystyle 3t^2\frac{du}{dt}+6t\cdot u=1$

$\displaystyle t^2\frac{du}{dt}+2t\cdot u=\frac{1}{3}$

Observe that we may write the left side of the equation as the differentiation of a product:

$\displaystyle \frac{d}{dt}\left(t^2u \right)=\frac{1}{3}$

Integrating with respect to $t$, we obtain:

$\displaystyle t^2u=\frac{1}{3}t+c_1$

Divide through by $t^2$:

$\displaystyle u=\frac{1}{3t}+\frac{c_1}{t^2}$

Back substitute for $u$:

$\displaystyle \frac{dy}{dt}=\frac{1}{3t}+\frac{c_1}{t^2}$

Integrate with respect to $t$:

$\displaystyle y(t)=\frac{1}{3}\ln(t)+\frac{c_1}{t}+c_2$

And so we may conclude:

$\displaystyle f(t)=\frac{1}{3}\ln(t)$

$\displaystyle g(t)=\frac{1}{t}$
 
Last edited:
Another way: using the substitution $v=y'$ we get: $v'+\dfrac{2}{t}v=\dfrac{1}{3t^2}$ (linear equation). According to a well-known theorem its general solution is

$ve^{\int\frac{2}{t}\;dt}-\displaystyle\int \dfrac{1}{3t^2}e^{\int\frac{2}{t}\;dt}\;dt=C$

We get $vt^2-\dfrac{1}{3}t=C$, hence $y'=\dfrac{C}{t^2}+\dfrac{1}{3t}$. Integrating:

$y=\dfrac{-C}{t}+\dfrac{1}{3}\ln t+K=\dfrac{1}{3}\ln t+\dfrac{c_1}{t}+c_2$

Then, $f(t)=\dfrac{1}{3}\ln t,\;g(t)=\dfrac{1}{t}$.
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K