Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm trying to prove that the projective n-space is homeomorphic to identification space [tex]B^n / [/tex] ~ where for [tex]x, x' \in B^n[/tex]: [tex]x[/tex]~[tex]x'~\Leftrightarrow~x=x'[/tex] or [tex]x'=\pm x \in S^{n-1}[/tex],

The way I have tried to solve this is, I introduced:

[tex]{H_{+}}^{n}=\{x\in S^n | x_n \geq 0\}[/tex]

Then [tex]{H_{+}}^{n}\cong B^n[/tex] by the function [tex]F(x)=(\frac{x}{|x|}sin\frac{\pi}{2}|x|,~cos\frac{\pi}{2}|x|)[/tex] [here [tex] \frac{x}{|x|}sin\frac{\pi}{2}|x|\in \mathbb{R}^n [/tex] so [tex]cos\frac{\pi}{2}|x|[/tex] is the [tex](n+1)[/tex]th component of [tex]F(x)[/tex]]

Now I need to show that [tex]{H_{+}}^{n}/[/tex]~ [tex]\cong P^n[/tex] but I'm not sure how to do this rigorously without getting into a terrible mess.

Anyone has any ideas?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homeomorphism of the projective n-space

**Physics Forums | Science Articles, Homework Help, Discussion**