Is there a continuous path in function space from f to g?

  • Context: Graduate 
  • Thread starter Thread starter madness
  • Start date Start date
  • Tags Tags
    Line
Click For Summary
SUMMARY

Any two continuous maps from a convex subset of R^n are homotopic, as demonstrated by the functions f(t) = (sin(2πt), cos(2πt)) and g(t) = (t, 0), which map from [0,1) to R^2. The homotopy can be expressed as h(t,s) = (1-s)f(t) + sg(t), illustrating that continuous transformations do not involve breaking or tearing the domain. The discussion emphasizes that while the image of a circle cannot be continuously deformed into a line segment without breaking, the path in function space remains unbroken, provided the appropriate topology is applied.

PREREQUISITES
  • Understanding of homotopy in topology
  • Familiarity with continuous functions and mappings
  • Knowledge of convex subsets in R^n
  • Basic concepts of topology related to function spaces
NEXT STEPS
  • Study the properties of homotopy equivalence in topology
  • Explore the concept of convexity in R^n and its implications for continuous mappings
  • Learn about the topology of function spaces and continuous paths
  • Investigate the differences between homeomorphism and homotopy in mathematical analysis
USEFUL FOR

Mathematicians, topologists, and students studying advanced calculus or algebraic topology who are interested in the properties of continuous functions and their transformations.

madness
Messages
813
Reaction score
69
Any two continuous maps from X to Y, where Y is a convex subset of R^n, are homotopic. For example, the functions f(t) = (sin2pit, cos2pit) and g(t) = (t,0) are maps from [0,1) to R^2. So these functions are homotopic. Intuitively, two functions are homotopic if one can be continuously deformed into the other. So is there really a continuous path in function space from f to g?
 
Physics news on Phys.org
As your circle is not closed, because it's the image of [0,1), it can be obtained by stretching and bending the image of g(t), which coincides with the interval [0,1) on the x-axis (the analytic expression of the homotopy is messy).
 
Ok how about I define the circle on [0,1] then? The analytic expression of the homotopy is h(t,s) = (1-s)f(t) + sg(t), which is not messy at all.
 
madness said:
Any two continuous maps from X to Y, where Y is a convex subset of R^n, are homotopic. For example, the functions f(t) = (sin2pit, cos2pit) and g(t) = (t,0) are maps from [0,1) to R^2. So these functions are homotopic. Intuitively, two functions are homotopic if one can be continuously deformed into the other. So is there really a continuous path in function space from f to g?

how about F(s,t) = sf(t) + (1-s)g(t) ?
 
Yes, I assume you didn't see my last post which stated exactly that. My problem is that continuous transformations don't generally involve breaking or tearing, which makes this counter-intuitive. For example, the circle is not homeomorphic to the line, but in terms of functions, it is homotopic to the line.
 
madness said:
Yes, I assume you didn't see my last post which stated exactly that. My problem is that continuous transformations don't generally involve breaking or tearing, which makes this counter-intuitive. For example, the circle is not homeomorphic to the line, but in terms of functions, it is homotopic to the line.

sorry I didn't see your post. The homotopy works and just takes advantage of the convexity of the plane.

There is no tearing or breaking here. breaking would happen if for some value of s, sf(t) + (1-s)g(t) broke the domain interval (0,1]. But each image is unbroken.
 
Not sure if I follow you there. I was thinking the path in function space should be unbroken, ie the is a continuum of functions from the circle to the line. I don't see what this has to do with the domain.
 
madness said:
Not sure if I follow you there. I was thinking the path in function space should be unbroken, ie the is a continuum of functions from the circle to the line. I don't see what this has to do with the domain.

breaking means breaking the domain not the image.You imagine the domain as deformed into the range by the function. If this deformation does not break the domain then the map is continuous

The path in function space is also unbroken. The image of the interval from zero to 1 in function space is unbroken. realize though that you need a topology on the function space to talk about continuous paths of functions - but the convex homotopy will work for reasonable topologies.

What you may be thinking of is a slightly different problem and are getting tripped up because the image of your function,f, is a circle in the plane.

If your domain is a circle then f is a map of this circle into the plane and its image can not be deformed onto the line segment without breaking .But there is no way to extend g to the circle continuously which again shows you that no such homotopy could ever exits on the circle. So it is all about what the function does to the domain.
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K