MHB How Accurate is Lagrange Interpolation for Approximating Cos(0.75)?

AI Thread Summary
The discussion centers on using Lagrange interpolation to approximate cos(0.75) with given cosine values, resulting in an approximation of 0.7313 and an actual error of 0.0004. The error bound calculated is 2.7 × 10^-8, with discrepancies attributed to the precision of the provided data. A user expresses disappointment over a lack of responses to their initial query about the intermediary steps in solving the problem. Other participants encourage sharing the solution for future reference, emphasizing the importance of community support. The conversation highlights the balance between academic integrity and collaborative learning in online forums.
Hero1
Messages
9
Reaction score
0
Problem:
Use the Lagrange interpolating polynomial of degree three or less and four digit chopping arithmetic to approximate cos(.750) using the following values. Find an error bound for the approximation.

cos(.6980) = 0.7661
cos(.7330) = 0.7432
cos(.7680) = 0.7193
cos(.8030) = 0.6946

The actual value of cos(.7500) = 0.7317 (to four decimal places). Explain the discrepancy between the actual error and the error bound.

_________________________________________________________________________________________________

Solution:
The approximation of cos(.7500) 0.7313. The actual error is 0.0004, and an error bound is 2.7 × 10-8. The discrepancy is due to the fact that the data are given only to four decimal places.

_________________________________________________________________________________________________

Can anyone help me figure out the intermediary steps from the problem to solution?
 
Mathematics news on Phys.org
I managed to figure out the solution to the problem myself, however, I am disappointed that no one responded to my thread.
 
Hero said:
I managed to figure out the solution to the problem myself, however, I am disappointed that no one responded to my thread.


Hi Hero,

I'm sorry no one responded to your thread. Over 95% of our threads get responded to, so believe me it's not a normal occurrence. Can you post how you solved the problem for us? Other people in the future might find it useful :)

Jameson
 
Jameson said:
Hi Hero,

I'm sorry no one responded to your thread. Over 95% of our threads get responded to, so believe me it's not a normal occurrence. Can you post how you solved the problem for us? Other people in the future might find it useful :)

Jameson

I can't post it until after the course is over. I don't want my instructor thinking that I stole online content.
 
Hero said:
I can't post it until after the course is over. I don't want my instructor thinking that I stole online content.

You posted the question here hoping someone else would answer it. How is your posting your own work different than someone else posting their work?

I guess if you just won't post your solution, then ok but I don't quite get it. As a rule of thumb I would suggest that you be comfortable with anything you post on this site to be read by anyone.

Again, sorry you didn't get any help but give it one more try and when another question comes up and I'm sure you'll find some help. I'll make sure our staff knows that you have a question if you post next time.
 
Jameson said:
You posted the question here hoping someone else would answer it. How is your posting your own work different than someone else posting their work?

I guess if you just won't post your solution, then ok but I don't quite get it. As a rule of thumb I would suggest that you be comfortable with anything you post on this site to be read by anyone.

Again, sorry you didn't get any help but give it one more try and when another question comes up and I'm sure you'll find some help. I'll make sure our staff knows that you have a question if you post next time.

I will post it
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top