How and why does it mention Theorem 13?

  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
SUMMARY

The discussion centers on the application of Theorem 13 in the context of Taylor series and Maclaurin polynomials, specifically for the function ##\cosh{x}##. Participants clarify that Theorem 13 applies to non-polynomial functions as long as they can be expressed as a polynomial of degree ##n## plus an error term of higher degree. The conversation emphasizes the importance of correctly denoting polynomials, suggesting the use of ##P_m## instead of ##P_{2n}## to avoid confusion. Ultimately, the theorem's relevance in proving the equivalence of the polynomial to the Maclaurin polynomial is affirmed.

PREREQUISITES
  • Understanding of Taylor series and Maclaurin polynomials
  • Familiarity with the function ##\cosh{x}##
  • Knowledge of asymptotic notation, specifically ##O(x)## notation
  • Basic concepts of polynomial functions and their degrees
NEXT STEPS
  • Study the implications of Theorem 13 in different mathematical contexts
  • Explore the derivation and applications of Taylor series for various functions
  • Learn about asymptotic analysis and its significance in error estimation
  • Investigate the properties of hyperbolic functions and their series expansions
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced series expansions and polynomial approximations.

mcastillo356
Gold Member
Messages
655
Reaction score
359
Homework Statement
Find the Maclaurin polynomial of order ##2n## for ##\cosh{x}##
Relevant Equations
Theorem 13: If ##f(x)=Q_{n}(x)+\Big((x-a)^{n+1}\Big)## as ##x\rightarrow{a}## where ##Q_{n}(x)## is a polynomial of degree at most ##n##, then ##Q_{n}(x)=P_{n}(x)##, that is, ##Q_{n}(x)## is the Taylor polynomial for ##f(x)## at ##x=a##.
Maclaurin formula for ##e^x## with errors in Big O form as ##x\rightarrow{0}##:
##e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\cdots+\dfrac{x^n}{n!}+O\Big(x^{n+1}\Big)##
Solution Write the Taylor formula for ##e^x## at ##x=0##, with ##n## replaced by ##2n+1##, and then rewrite that with ##x## replaced with ##-x##. We get:

$$e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\cdots+\dfrac{x^{2n}}{(2n)!}+\dfrac{x^{2n+1}}{(2n+1)!}+O(x^{2n+2})$$

$$e^{-x}=1-x+\dfrac{x^2}{2!}-\dfrac{x^3}{3!}+\cdots+\dfrac{x^{2n}}{(2n)!}-\dfrac{x^{2n+1}}{(2n+1)!}+O(x^{2n+2})$$

as ##x\rightarrow{0}##. Now average these two to get

$$\cosh{x}=\dfrac{e^x+e^{-x}}{2}=1+\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+\cdots+\dfrac{x^{2n}}{(2n)!}+O(x^{2n+2})$$

as ##x\rightarrow{0}##. By Theorem 13 the Maclaurin polynomial ##P_{2n}(x)## for ##\cosh{x}## is

$$P_{2n}(x)=1+\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+\cdots+\dfrac{x^{2n}}{(2n)!}$$

Question Isn't Theorem 13 stated for polynomials no more than ##n##-th-order? Or is there also understood that works as far as error term is of higher degree than the polynomial obtained: thus, we can mention theorem 13 at the end of the exercise?

¡Greetings!
 
Last edited:
Physics news on Phys.org
It's unfortunate that n appears in both Thm. 13 and in your work. Instead of ##P_{2n}##, write this as ##P_m## (where m = 2n). Then what does Thm. 13 say about your degree m polynomial
 
  • Like
  • Informative
Likes topsquark and mcastillo356
mcastillo356 said:
Question Isn't Theorem 13 stated for polynomials no more than ##n##-th-order? Or is there also understood that works as far as error term is of higher degree than the polynomial obtained: thus, we can mention theorem 13 at the end of the exercise?

Theorem 13 states that if f(x) = Q_n(x) + O((x-a)^{n+1}) then Q_n(x) = P_n(x). Thus it applies to non-polynomial f provided it can written as a polynomial of degree n plus an error term which is no larger than O((x-a)^{n+1}).
 
  • Like
  • Informative
Likes topsquark and mcastillo356
Mark44 said:
It's unfortunate that n appears in both Thm. 13 and in your work. Instead of ##P_{2n}##, write this as ##P_m## (where m = 2n). Then what does Thm. 13 say about your degree m polynomial
¡The same as about the ##n## at most order polynomial at Theorem 13!. ##n\in{\mathbb{N}}##?
 
mcastillo356 said:
thus, we can mention theorem 13 at the end of the exercise?
Getting a polynomial is direct, but Theorem 13 is required to prove that the polynomial is the same as the Maclaurin polynomial
 
mcastillo356 said:
¡The same as about the ##n## at most order polynomial at Theorem 13!. ##n\in{\mathbb{N}}##?
Yes, of course...
 
Mark44 said:
It's unfortunate that n appears in both Thm. 13 and in your work. Instead of ##P_{2n}##, write this as ##P_m## (where m = 2n).
Definetely, thanks, @Mark44.
@pasmith, @FactChecker, Theorem 13 is been very difficult to understand, but I worked it out in a Spanish Maths Forum. I'd love to share with PF, if required to.
Peace and Love!
 

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
12
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
17
Views
2K