MHB How are the Hermite Polynomials Defined and Calculated?

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Differentiation
Click For Summary
Hermite polynomials are defined using the formula $$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \{ e^{-x^2}\}$$. The specific polynomial for n=5 is calculated as $$\mathscr{H}_5(x) = 32 x^5 - 160 x^3 + 120 x$$. A recursive relation for Hermite polynomials is established as $$H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1}(x)$$, with initial conditions provided for H0 through H5. The discussion highlights both the definition and calculation methods, showcasing the elegance of Hermite polynomials. Overall, the thread emphasizes the mathematical properties and derivations of these polynomials.
DreamWeaver
Messages
297
Reaction score
0
Defining the Hermite Polynomials by:

$$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \Bigg\{ e^{-x^2}\Bigg\}$$Show that

$$\mathscr{H}_5(x) = 32 x^5-160 x^3+120 x$$
 
Mathematics news on Phys.org
\[H_5 = -e^{x^2}\cdot \frac{\mathrm{d^5} }{\mathrm{d} x^5}\left \{ e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^4} }{\mathrm{d} x^4}\left \{ -2xe^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d^3} }{\mathrm{d} x^3}\left \{ (4x^2-2)e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^2} }{\mathrm{d} x^2}\left \{ (-8x^3+12x)e^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d} }{\mathrm{d} x}\left \{ (16x^4-48x^2+12)e^{-x^2} \right \} =-e^{x^2}\cdot \left \{ (-32x^5+160x^3-120x)e^{-x^2} \right \}\\\\ =32x^5-160x^3+120x\]
 
DreamWeaver said:
Defining the Hermite Polynomials by:

$$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \Bigg\{ e^{-x^2}\Bigg\}$$Show that

$$\mathscr{H}_5(x) = 32 x^5-160 x^3+120 x$$

[sp]The recursive relation for Hermite Polynomials is...

$\displaystyle H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1} (x)\ (1)$

... and is...

$\displaystyle H_{0}= 1$

$\displaystyle H_{1} = 2\ x$

... so that...

$\displaystyle H_{2} = 4\ x^{2} - 2$

$\displaystyle H_{3} = 8\ x^{3} - 12\ x$

$\displaystyle H_{4} = 16\ x^{4} - 48\ x^{2} + 12$

$\displaystyle H_{5} = 32\ x^{5} - 160\ x^{3} + 120\ x$

[/sp]

Kind regards

$\chi$ $\sigma$
 
lfdahl said:
\[H_5 = -e^{x^2}\cdot \frac{\mathrm{d^5} }{\mathrm{d} x^5}\left \{ e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^4} }{\mathrm{d} x^4}\left \{ -2xe^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d^3} }{\mathrm{d} x^3}\left \{ (4x^2-2)e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^2} }{\mathrm{d} x^2}\left \{ (-8x^3+12x)e^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d} }{\mathrm{d} x}\left \{ (16x^4-48x^2+12)e^{-x^2} \right \} =-e^{x^2}\cdot \left \{ (-32x^5+160x^3-120x)e^{-x^2} \right \}\\\\ =32x^5-160x^3+120x\]

chisigma said:
[sp]The recursive relation for Hermite Polynomials is...

$\displaystyle H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1} (x)\ (1)$

... and is...

$\displaystyle H_{0}= 1$

$\displaystyle H_{1} = 2\ x$

... so that...

$\displaystyle H_{2} = 4\ x^{2} - 2$

$\displaystyle H_{3} = 8\ x^{3} - 12\ x$

$\displaystyle H_{4} = 16\ x^{4} - 48\ x^{2} + 12$

$\displaystyle H_{5} = 32\ x^{5} - 160\ x^{3} + 120\ x$

[/sp]

Kind regards

$\chi$ $\sigma$
Two excellent, elegant, and - even better - different proofs. Thanks for taking part, people! (Sun)

Gethin
 

Similar threads

Replies
8
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
912
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K