How are the Hermite Polynomials Defined and Calculated?

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Differentiation
Click For Summary
SUMMARY

The Hermite Polynomials are defined using the formula $$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \Bigg\{ e^{-x^2}\Bigg\}$$. The specific polynomial for n=5 is given by $$\mathscr{H}_5(x) = 32 x^5 - 160 x^3 + 120 x$$. The recursive relation for Hermite Polynomials is established as $$H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1}(x)$$, with initial conditions $$H_{0}= 1$$ and $$H_{1} = 2\ x$$. This discussion provides a comprehensive overview of the definition and calculation methods for Hermite Polynomials.

PREREQUISITES
  • Understanding of differential calculus
  • Familiarity with exponential functions
  • Knowledge of polynomial functions
  • Basic grasp of recursive sequences
NEXT STEPS
  • Explore the properties of Hermite Polynomials in quantum mechanics
  • Learn about the applications of Hermite Polynomials in numerical analysis
  • Study the relationship between Hermite Polynomials and orthogonal polynomials
  • Investigate the derivation of Hermite Polynomials using generating functions
USEFUL FOR

Mathematicians, physicists, and engineers interested in polynomial theory, quantum mechanics, and numerical methods will benefit from this discussion on Hermite Polynomials.

DreamWeaver
Messages
297
Reaction score
0
Defining the Hermite Polynomials by:

$$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \Bigg\{ e^{-x^2}\Bigg\}$$Show that

$$\mathscr{H}_5(x) = 32 x^5-160 x^3+120 x$$
 
Physics news on Phys.org
\[H_5 = -e^{x^2}\cdot \frac{\mathrm{d^5} }{\mathrm{d} x^5}\left \{ e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^4} }{\mathrm{d} x^4}\left \{ -2xe^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d^3} }{\mathrm{d} x^3}\left \{ (4x^2-2)e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^2} }{\mathrm{d} x^2}\left \{ (-8x^3+12x)e^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d} }{\mathrm{d} x}\left \{ (16x^4-48x^2+12)e^{-x^2} \right \} =-e^{x^2}\cdot \left \{ (-32x^5+160x^3-120x)e^{-x^2} \right \}\\\\ =32x^5-160x^3+120x\]
 
DreamWeaver said:
Defining the Hermite Polynomials by:

$$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \Bigg\{ e^{-x^2}\Bigg\}$$Show that

$$\mathscr{H}_5(x) = 32 x^5-160 x^3+120 x$$

[sp]The recursive relation for Hermite Polynomials is...

$\displaystyle H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1} (x)\ (1)$

... and is...

$\displaystyle H_{0}= 1$

$\displaystyle H_{1} = 2\ x$

... so that...

$\displaystyle H_{2} = 4\ x^{2} - 2$

$\displaystyle H_{3} = 8\ x^{3} - 12\ x$

$\displaystyle H_{4} = 16\ x^{4} - 48\ x^{2} + 12$

$\displaystyle H_{5} = 32\ x^{5} - 160\ x^{3} + 120\ x$

[/sp]

Kind regards

$\chi$ $\sigma$
 
lfdahl said:
\[H_5 = -e^{x^2}\cdot \frac{\mathrm{d^5} }{\mathrm{d} x^5}\left \{ e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^4} }{\mathrm{d} x^4}\left \{ -2xe^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d^3} }{\mathrm{d} x^3}\left \{ (4x^2-2)e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^2} }{\mathrm{d} x^2}\left \{ (-8x^3+12x)e^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d} }{\mathrm{d} x}\left \{ (16x^4-48x^2+12)e^{-x^2} \right \} =-e^{x^2}\cdot \left \{ (-32x^5+160x^3-120x)e^{-x^2} \right \}\\\\ =32x^5-160x^3+120x\]

chisigma said:
[sp]The recursive relation for Hermite Polynomials is...

$\displaystyle H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1} (x)\ (1)$

... and is...

$\displaystyle H_{0}= 1$

$\displaystyle H_{1} = 2\ x$

... so that...

$\displaystyle H_{2} = 4\ x^{2} - 2$

$\displaystyle H_{3} = 8\ x^{3} - 12\ x$

$\displaystyle H_{4} = 16\ x^{4} - 48\ x^{2} + 12$

$\displaystyle H_{5} = 32\ x^{5} - 160\ x^{3} + 120\ x$

[/sp]

Kind regards

$\chi$ $\sigma$
Two excellent, elegant, and - even better - different proofs. Thanks for taking part, people! (Sun)

Gethin
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K