MHB How are the Hermite Polynomials Defined and Calculated?

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Differentiation
AI Thread Summary
Hermite polynomials are defined using the formula $$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \{ e^{-x^2}\}$$. The specific polynomial for n=5 is calculated as $$\mathscr{H}_5(x) = 32 x^5 - 160 x^3 + 120 x$$. A recursive relation for Hermite polynomials is established as $$H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1}(x)$$, with initial conditions provided for H0 through H5. The discussion highlights both the definition and calculation methods, showcasing the elegance of Hermite polynomials. Overall, the thread emphasizes the mathematical properties and derivations of these polynomials.
DreamWeaver
Messages
297
Reaction score
0
Defining the Hermite Polynomials by:

$$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \Bigg\{ e^{-x^2}\Bigg\}$$Show that

$$\mathscr{H}_5(x) = 32 x^5-160 x^3+120 x$$
 
Mathematics news on Phys.org
\[H_5 = -e^{x^2}\cdot \frac{\mathrm{d^5} }{\mathrm{d} x^5}\left \{ e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^4} }{\mathrm{d} x^4}\left \{ -2xe^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d^3} }{\mathrm{d} x^3}\left \{ (4x^2-2)e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^2} }{\mathrm{d} x^2}\left \{ (-8x^3+12x)e^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d} }{\mathrm{d} x}\left \{ (16x^4-48x^2+12)e^{-x^2} \right \} =-e^{x^2}\cdot \left \{ (-32x^5+160x^3-120x)e^{-x^2} \right \}\\\\ =32x^5-160x^3+120x\]
 
DreamWeaver said:
Defining the Hermite Polynomials by:

$$\mathscr{H}_n(x) = (-1)^n e^{x^2}\, \frac{d^n}{dx^n} \Bigg\{ e^{-x^2}\Bigg\}$$Show that

$$\mathscr{H}_5(x) = 32 x^5-160 x^3+120 x$$

[sp]The recursive relation for Hermite Polynomials is...

$\displaystyle H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1} (x)\ (1)$

... and is...

$\displaystyle H_{0}= 1$

$\displaystyle H_{1} = 2\ x$

... so that...

$\displaystyle H_{2} = 4\ x^{2} - 2$

$\displaystyle H_{3} = 8\ x^{3} - 12\ x$

$\displaystyle H_{4} = 16\ x^{4} - 48\ x^{2} + 12$

$\displaystyle H_{5} = 32\ x^{5} - 160\ x^{3} + 120\ x$

[/sp]

Kind regards

$\chi$ $\sigma$
 
lfdahl said:
\[H_5 = -e^{x^2}\cdot \frac{\mathrm{d^5} }{\mathrm{d} x^5}\left \{ e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^4} }{\mathrm{d} x^4}\left \{ -2xe^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d^3} }{\mathrm{d} x^3}\left \{ (4x^2-2)e^{-x^2} \right \} =-e^{x^2}\cdot \frac{\mathrm{d^2} }{\mathrm{d} x^2}\left \{ (-8x^3+12x)e^{-x^2} \right \}\\\\ =-e^{x^2}\cdot \frac{\mathrm{d} }{\mathrm{d} x}\left \{ (16x^4-48x^2+12)e^{-x^2} \right \} =-e^{x^2}\cdot \left \{ (-32x^5+160x^3-120x)e^{-x^2} \right \}\\\\ =32x^5-160x^3+120x\]

chisigma said:
[sp]The recursive relation for Hermite Polynomials is...

$\displaystyle H_{n+1}(x) = 2\ x\ H_{n}(x) - 2\ n\ H_{n-1} (x)\ (1)$

... and is...

$\displaystyle H_{0}= 1$

$\displaystyle H_{1} = 2\ x$

... so that...

$\displaystyle H_{2} = 4\ x^{2} - 2$

$\displaystyle H_{3} = 8\ x^{3} - 12\ x$

$\displaystyle H_{4} = 16\ x^{4} - 48\ x^{2} + 12$

$\displaystyle H_{5} = 32\ x^{5} - 160\ x^{3} + 120\ x$

[/sp]

Kind regards

$\chi$ $\sigma$
Two excellent, elegant, and - even better - different proofs. Thanks for taking part, people! (Sun)

Gethin
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top