MHB How can $5^{1985}-1$ be factored into three integers greater than $5^{100}$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Product
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factor $5^{1985}-1$ into a product of three integers, each of which is greater than $5^{100}$.
 
Mathematics news on Phys.org
Solution suggested by other:

Note that $x^5-1=(x-1)(x^4+x^3+x^2+x+1)$ and $x^4+x^3+x^2+x+1=(x^2+3x+1)^2-5x(x+1)^2$, hence if we let $x=5^{397}$, we have

$\begin{align*}x^4+x^3+x^2+x+1&=(x^2+3x+1)^2-5x(x+1)^2\\&=(x^2+3x+1)^2-5^{398}(x+1)^2\\&=(x^2+3x+1)^2-(5^{199}(x+1))^2\\&=(x^2+3x+1+5^{199}(x+1))(x^2+3x+1-5^{199}(x+1)) \end{align*}$

It is obvious that $x-1$ and $x^2+3x+1+5^{199}(x+1)$ are both greater than $5^{100}$.

As for the third factor, we have

$x^2+3x+1-5^{199}(x+1)=x(x-5^{199})+3a-5^{199}+1 \ge a+0+1 \ge 5^{100}$

Hence $5^{1985}-1$ can be expressed as a product of three integers, i.e. $5^{1985}-1=(5^{397}-1)(5^{794}+3(5^{397})+1+5^{199}(5^{397}+1))(5^{794}+3(5^{397})+1-5^{199}(5^{397}+1))$, each of which factor is greater than $5^{100}$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
1
Views
958
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K