MHB How can $5^{1985}-1$ be factored into three integers greater than $5^{100}$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Product
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factor $5^{1985}-1$ into a product of three integers, each of which is greater than $5^{100}$.
 
Mathematics news on Phys.org
Solution suggested by other:

Note that $x^5-1=(x-1)(x^4+x^3+x^2+x+1)$ and $x^4+x^3+x^2+x+1=(x^2+3x+1)^2-5x(x+1)^2$, hence if we let $x=5^{397}$, we have

$\begin{align*}x^4+x^3+x^2+x+1&=(x^2+3x+1)^2-5x(x+1)^2\\&=(x^2+3x+1)^2-5^{398}(x+1)^2\\&=(x^2+3x+1)^2-(5^{199}(x+1))^2\\&=(x^2+3x+1+5^{199}(x+1))(x^2+3x+1-5^{199}(x+1)) \end{align*}$

It is obvious that $x-1$ and $x^2+3x+1+5^{199}(x+1)$ are both greater than $5^{100}$.

As for the third factor, we have

$x^2+3x+1-5^{199}(x+1)=x(x-5^{199})+3a-5^{199}+1 \ge a+0+1 \ge 5^{100}$

Hence $5^{1985}-1$ can be expressed as a product of three integers, i.e. $5^{1985}-1=(5^{397}-1)(5^{794}+3(5^{397})+1+5^{199}(5^{397}+1))(5^{794}+3(5^{397})+1-5^{199}(5^{397}+1))$, each of which factor is greater than $5^{100}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top