MHB How can $5^{1985}-1$ be factored into three integers greater than $5^{100}$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Product
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factor $5^{1985}-1$ into a product of three integers, each of which is greater than $5^{100}$.
 
Mathematics news on Phys.org
Solution suggested by other:

Note that $x^5-1=(x-1)(x^4+x^3+x^2+x+1)$ and $x^4+x^3+x^2+x+1=(x^2+3x+1)^2-5x(x+1)^2$, hence if we let $x=5^{397}$, we have

$\begin{align*}x^4+x^3+x^2+x+1&=(x^2+3x+1)^2-5x(x+1)^2\\&=(x^2+3x+1)^2-5^{398}(x+1)^2\\&=(x^2+3x+1)^2-(5^{199}(x+1))^2\\&=(x^2+3x+1+5^{199}(x+1))(x^2+3x+1-5^{199}(x+1)) \end{align*}$

It is obvious that $x-1$ and $x^2+3x+1+5^{199}(x+1)$ are both greater than $5^{100}$.

As for the third factor, we have

$x^2+3x+1-5^{199}(x+1)=x(x-5^{199})+3a-5^{199}+1 \ge a+0+1 \ge 5^{100}$

Hence $5^{1985}-1$ can be expressed as a product of three integers, i.e. $5^{1985}-1=(5^{397}-1)(5^{794}+3(5^{397})+1+5^{199}(5^{397}+1))(5^{794}+3(5^{397})+1-5^{199}(5^{397}+1))$, each of which factor is greater than $5^{100}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top