Thank you again Opalg for participating! I think we used the pretty same approach, because the coefficients of the terms that we have in our methods are all the same.
My solution:
According to the power reduction formula, we have
$\cos^7 x=\dfrac{35\cos x+21\cos 3x+7\cos5x+\cos7x}{64}$
hence
$\cos^7 \left(x+\dfrac{2 \pi}{3} \right)=\dfrac{35\cos \left(x+\dfrac{2 \pi}{3} \right)+21\cos 3\left(x+\dfrac{2 \pi}{3} \right)+7\cos5\left(x+\dfrac{2 \pi}{3} \right)+\cos7\left(x+\dfrac{2 \pi}{3} \right)}{64}$
$\cos^7 \left(x+\dfrac{4 \pi}{3} \right)=\dfrac{35\cos \left(x+\dfrac{4 \pi}{3} \right)+21\cos 3\left(x+\dfrac{4 \pi}{3} \right)+7\cos5\left(x+\dfrac{4 \pi}{3} \right)+\cos7\left(x+\dfrac{4 \pi}{3} \right)}{64}$
Notice that
$35\cos x+35\cos \left(x+\dfrac{2 \pi}{3} \right)+35\cos \left(x+\dfrac{4 \pi}{3} \right)=35\left( \cos x+\cos \left(x+\dfrac{2 \pi}{3} \right) \right)+35\cos \left(x+\dfrac{4 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=35\left( 2 \cos \left(\dfrac{ \pi}{3} \right) \cos \left( x+\dfrac{ \pi}{3} \right) \right)+35\cos \left(x+\dfrac{4 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=35 \cos \left( x+\dfrac{ \pi}{3} \right) +35\cos \left(x+\dfrac{4 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=35 \left( \cos \left( x+\dfrac{ \pi}{3} \right) +\cos \left(x+\dfrac{4 \pi}{3} \right) \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=35 \left( 2\cos \left( \dfrac{ \pi}{2} \right) \cos \left(x+\dfrac{5 \pi}{6} \right) \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=0$
Similarly,
$21\cos 3x+21\cos 3\left(x+\dfrac{2 \pi}{3} \right)+21\cos 3\left(x+\dfrac{4 \pi}{3} \right)=21\cos 3x+21\cos (3x+2 \pi)+21\cos (3x+2 \pi)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=21\cos 3x+21\cos 3x+21\cos 3x$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=63\cos 3x$
$7\cos5x+7\cos5\left(x+\dfrac{2 \pi}{3} \right)+7\cos5\left(x+\dfrac{4 \pi}{3} \right)=7\left( \cos 5x+\cos 5\left(x+\dfrac{2 \pi}{3} \right) \right)+7\cos 5\left(x+\dfrac{4 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=7\left( 2 \cos \left(\dfrac{ 5\pi}{3} \right) \cos \left( 5x+\dfrac{ 5\pi}{3} \right) \right)+7\cos \left(5x+\dfrac{20 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=7 \cos \left( 5x+\dfrac{ 5\pi}{3} \right) +7\cos \left(5x+\dfrac{20 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=7 \left( \cos \left( 5x+\dfrac{ 5\pi}{3} \right) +\cos \left(5x+\dfrac{20 \pi}{3} \right) \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=7 \left( 2\cos \left( \dfrac{ 5\pi}{2} \right) \cos \left(5x+\dfrac{25 \pi}{6} \right) \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=0$
and finally
$\cos7x+\cos7\left(x+\dfrac{2 \pi}{3} \right)+\cos7\left(x+\dfrac{4 \pi}{3} \right)=\left( \cos 7x+\cos 7\left(x+\dfrac{2 \pi}{3} \right) \right)+\cos 7\left(x+\dfrac{4 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\left( 2 \cos \left(\dfrac{ 7\pi}{3} \right) \cos \left( 7x+\dfrac{ 7\pi}{3} \right) \right)+\cos \left(7x+\dfrac{28 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \cos \left( 5x+\dfrac{ 5\pi}{3} \right) +7\cos \left(5x+\dfrac{20 \pi}{3} \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\left( \cos \left( 7x+\dfrac{ 7\pi}{3} \right) +\cos \left(7x+\dfrac{28 \pi}{3} \right) \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=2 \left( 2\cos \left( \dfrac{ 21\pi}{2} \right) \cos \left(7x+\dfrac{35 \pi}{6} \right) \right)$
$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=0$
Therefore
$\cos^7 x+\cos^7 \left( x+\dfrac{2 \pi}{3} \right)+\cos^7 \left( x+\dfrac{4 \pi}{3} \right)=0+\dfrac{63 \cos 3x}{64}+0+0=\dfrac{63 \cos 3x}{64}$