How can I find the n,that satisfies this condition?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Condition
Click For Summary
SUMMARY

The discussion focuses on determining the value of \( n \) that satisfies the equation \( n \log{n} = 10^6 \) for an algorithm's cost function \( f(n) \) measured in microseconds. The approximate solution for this equation is \( n \sim 87847.5 \). Additionally, the participants discuss finding \( n \) for the factorial function \( f(n) = n! = 10^6 \) microseconds, emphasizing the need for approximation methods such as binary search due to the lack of elementary function solutions. The conversation highlights the relevance of big-O notation in algorithm complexity analysis.

PREREQUISITES
  • Understanding of algorithm complexity and big-O notation
  • Familiarity with logarithmic functions and their properties
  • Basic knowledge of approximation methods, particularly binary search
  • Experience with mathematical equations involving factorials and logarithms
NEXT STEPS
  • Learn about numerical methods for solving equations, focusing on binary search techniques
  • Study the implications of big-O notation in algorithm analysis
  • Explore advanced topics in algorithm complexity, including \( n! \) growth rates
  • Investigate the use of computational tools like WolframAlpha for solving complex equations
USEFUL FOR

Mathematicians, computer scientists, and software engineers interested in algorithm analysis and optimization techniques will benefit from this discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following exercise:

Suppose that we have an algorithm,which cost is $f(n) \ \mu sec (10^{-6} sec)$.

If $f(n)=n \log{n}$,to what should $n$ be equal,so that the cost is $10^6 \ \mu sec$?

So,it must be:

$$n \log{n}=10^6 \Rightarrow n^n=10^{10^6}$$

But how can I find the $n$,that satisfies this condition? (Thinking)

Also,how can I find the $n$,such that $f(n)=n!=10^6 \mu sec$? (Thinking)
 
Last edited:
Technology news on Phys.org
evinda said:
Hello! (Wave)

I am looking at the following exercise:

Suppose that we have an algorithm,which cost is $f(n) \ \mu sec (10^{-6} sec)$.

If $f(n)=n \log{n}$,to what should $n$ be equal,so that the cost is $10^6 \ \mu sec$?

So,it must be:

$$n \log{n}=10^6 \Rightarrow n^n=10^{10^6}$$

But how can I find the $n$,that satisfies this condition? (Thinking)

Also,how can I find the $n$,such that $f(n)=n!=10^6 \mu sec$? (Thinking)

The equation $\displaystyle x\ \ln x = 10^{6}$ has solution $x \sim 87847.5$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The equation $\displaystyle x\ \ln x = 10^{6}$ has solution $x \sim 87847.5$...

Kind regards

$\chi$ $\sigma$

So,can we just find an approximation? (Thinking)
 
According to WolframAlpha, the equation $x\log(x)=a$ does not have a solution in elementary functions when $a\ne0$. So yes, you should find an approximation, for example, using binary search (establishing an interval that contains a solution and dividing it in half repeatedly). It seems that this problem comes from computer science, where complexity of algorithms is measured not even up to the order of magnitude, but up to a multiplicative constant (big-O notation). So it may be sufficient to say that if the logarithm is to the base 2, then $n\log n<10^6$ for $n=10^4$, but $n\log n>10^6$ for $n=10^5$.
 
Evgeny.Makarov said:
According to WolframAlpha, the equation $x\log(x)=a$ does not have a solution in elementary functions when $a\ne0$. So yes, you should find an approximation, for example, using binary search (establishing an interval that contains a solution and dividing it in half repeatedly). It seems that this problem comes from computer science, where complexity of algorithms is measured not even up to the order of magnitude, but up to a multiplicative constant (big-O notation). So it may be sufficient to say that if the logarithm is to the base 2, then $n\log n<10^6$ for $n=10^4$, but $n\log n>10^6$ for $n=10^5$.

Nice,I understand..thank you very much! (Smile)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
9
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K