MHB How Can I Prove the Set Operation AX(BΔC) = (AXB)Δ(AXC)?

  • Thread starter Thread starter daniel felipe
  • Start date Start date
  • Tags Tags
    Demonstration Set
AI Thread Summary
The discussion focuses on proving the set operation AX(BΔC) = (AXB)Δ(AXC). The proof begins by considering an element (x,y) in A×(BΔC) and analyzing the implications of y being in either B or C, but not both. It demonstrates that if y is in B and not in C, then (x,y) belongs to A×B but not to A×C, thus confirming (x,y) is in (A×B)Δ(A×C). A similar argument is made for the case where y is in C but not in B. The conclusion invites further exploration of proving the converse inclusion.
daniel felipe
Messages
1
Reaction score
0
Hello
There is the possibility that they help me to solve this demonstration. please

AX(BΔC)=(AXB)Δ(AXC)
 
Physics news on Phys.org
Hi, and welcome to the forum.

daniel felipe said:
AX(BΔC)=(AXB)Δ(AXC)
Suppose that $(x,y)\in A\times(B\triangle C)$. Then $x\in A$ and $y\in B\triangle C$. The latter means that $y\in B$ or $y\in C$, but not both. In the first case, i.e., $y\in B$ but $y\notin C$, we have $(x,y)\in A\times B$. However, $(x,y)\notin A\times C$ because that would mean, in particular, that $y\in C$. Therefore, $(x,y)\in (A\times B)\triangle (A\times C)$. The second case ($y\in C$ but $y\notin B$) is considered similarly. This concludes the proof that $A\times(B\triangle C)\subseteq (A\times B)\triangle (A\times C)$. You can try proving the converse inclusion.

For the future, please read the http://mathhelpboards.com/rules/, especially rule 11 (click "Expand" button on top).
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top