How can I rederive this Mathematica result for a complex equation?

  • Context: Mathematica 
  • Thread starter Thread starter thatboi
  • Start date Start date
  • Tags Tags
    Mathematica
Click For Summary
SUMMARY

The discussion focuses on rederiving a solution for the equation $$\left(k-i\frac{m_{1}}{v}\right)^{-1}\Bigg(-i\frac{x}{v}-\frac{\sqrt{-x^2+m_{1}^2+k^2v^2}}{v}\Bigg) = \left(k+i\frac{m_{2}}{v}\right)^{-1}\Bigg(i\frac{x}{v}+\frac{\sqrt{-x^2+m_{2}^2+k^2v^2}}{v}\Bigg)$$ using Mathematica. The established solution is $$x=\pm\frac{kv(m_{1}+m_{2})}{\sqrt{(m_{1}-m_{2})^2+4k^2v^2}}$$. A key step in the rederivation involves multiplying both sides of the equation and equating real and imaginary coefficients, as suggested by a participant named Dan.

PREREQUISITES
  • Understanding of complex numbers and the imaginary unit (i)
  • Familiarity with Mathematica for symbolic computation
  • Knowledge of algebraic manipulation and equation solving
  • Experience with real and imaginary coefficient analysis in equations
NEXT STEPS
  • Study the process of multiplying complex fractions and equating coefficients
  • Learn advanced techniques in Mathematica for solving complex equations
  • Explore the implications of real and imaginary parts in complex analysis
  • Investigate common pitfalls in algebraic manipulation of complex equations
USEFUL FOR

Mathematicians, physicists, and students engaged in solving complex equations, particularly those using Mathematica for computational assistance.

thatboi
Messages
130
Reaction score
20
Hey all,
I am trying to solve the following equation: $$\left(k-i\frac{m_{1}}{v}\right)^{-1}\Bigg(-i\frac{x}{v}-\frac{\sqrt{-x^2+m_{1}^2+k^2v^2}}{v}\Bigg) = \left(k+i\frac{m_{2}}{v}\right)^{-1}\Bigg(i\frac{x}{v}+\frac{\sqrt{-x^2+m_{2}^2+k^2v^2}}{v}\Bigg)$$ for ##x## and we can assume ##m_{1},m_{2},k,v## are all real and ##i## is the imaginary unit. Now mathematica tells me that the solution is $$x=\pm\frac{kv(m_{1}+m_{2})}{\sqrt{(m_{1}-m_{2})^2+4k^2v^2}}$$ but I am having trouble rederiving the result. Any advice would be appreciated!
 
Physics news on Phys.org
thatboi said:
Hey all,
I am trying to solve the following equation: $$\left(k-i\frac{m_{1}}{v}\right)^{-1}\Bigg(-i\frac{x}{v}-\frac{\sqrt{-x^2+m_{1}^2+k^2v^2}}{v}\Bigg) = \left(k+i\frac{m_{2}}{v}\right)^{-1}\Bigg(i\frac{x}{v}+\frac{\sqrt{-x^2+m_{2}^2+k^2v^2}}{v}\Bigg)$$ for ##x## and we can assume ##m_{1},m_{2},k,v## are all real and ##i## is the imaginary unit. Now mathematica tells me that the solution is $$x=\pm\frac{kv(m_{1}+m_{2})}{\sqrt{(m_{1}-m_{2})^2+4k^2v^2}}$$ but I am having trouble rederiving the result. Any advice would be appreciated!
Without seeing your work there is little we can do to help.

Here's step 1 (as I see it.) Multiply both sides out and equate real and imaginary coefficients.

-Dan
 
$$\left(k-i\frac{m_{1}}{v}\right)^{-1}\Bigg(-i\frac{x}{v}-\frac{\sqrt{-x^2+m_{1}^2+k^2v^2}}{v}\Bigg) = \left(k+i\frac{m_{2}}{v}\right)^{-1}\Bigg(i\frac{x}{v}+\frac{\sqrt{-x^2+m_{2}^2+k^2v^2}}{v}\Bigg)$$
\begin{align*}
\dfrac{kv+i m_2}{kv-i m_1}&=-\dfrac{ix+\sqrt{-x^2+m_{2}^2+k^2v^2}}{ix+\sqrt{-x^2+m_{1}^2+k^2v^2}}=
-\dfrac{ix+\sqrt{-x^2+m_{2}^2+k^2v^2}}{ix+\sqrt{-x^2+m_{1}^2+k^2v^2}}\cdot \dfrac{ix-\sqrt{-x^2+m_{1}^2+k^2v^2}}{ix-\sqrt{-x^2+m_{1}^2+k^2v^2}}\\
&=\dfrac{\left(ix+\sqrt{-x^2+m_{2}^2+k^2v^2}\right)\cdot \left(ix-\sqrt{-x^2+m_{1}^2+k^2v^2}\right)}{m_1^2+k^2v^2}
\end{align*}
\begin{align*}
\left(kv+i m_2\right)\left(kv+i m_1\right)&=\left(ix+\sqrt{-x^2+m_{2}^2+k^2v^2}\right)\cdot \left(ix-\sqrt{-x^2+m_{1}^2+k^2v^2}\right)\\
&\vdots\\
&\text{etc.}
\end{align*}
... until you end up with ##1=1## or ##1=0##. If it was wrong, then very likely due to a confusion of ##m_1## and ##m_2## or a sign error.
 
  • Like
Likes   Reactions: thatboi and topsquark

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 0 ·
Replies
0
Views
982
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
626