How can I represent this expression as a Fourier Transform?

Click For Summary
The discussion centers on representing a specific expression related to quantum radar as a Fourier transform. The expression involves a summation of photon wave functions from atoms in a target, with parameters including a constant and wave number. The user seeks guidance on transforming this summation into a continuous integral for simulation purposes, noting its similarity to radar topics involving isotropic point scatterers. Recommendations for standard radar literature are provided to assist in understanding the mathematical concepts. The inquiry highlights the intersection of quantum mechanics and radar technology in theoretical research.
Xyius
Messages
501
Reaction score
4
Hello,

I hope I am posting this in the correct forum topic. It really is more of a "mathy" type of question, but I am posting it here because it deals with radar, and this type of math is used a lot in radar. To the mods, feel free to move it to a more suitable location if desired.

I have come across an expression in my research that I believe can be represented in terms of a Fourier transform. My research is a theoretical investigation on the effectiveness of a quantum radar to see a target in relation to a normal radar. A quantum radar is a new (theoretical only at the moment) concept to use quantum states of photons to detect targets at a distance. The expression is,

\sigma = \gamma \left| \sum_{n=1}^{N} e^{i k \Delta R_n} \right|^2

Where ##\gamma## is a constant, ##k## is the wave number and ##\Delta R_n = \sqrt{(x-x_n)^2+(y-y_n)^2+(z-z_n)^2}##, which is the distance from the receiver (monostatic) to each atom. Basically what this expression is, is the summation of the photon wave function from each atom in the object. So ##N## represents the total number of atoms. This summation can absolutely be changed to be a continuous integral to obtain the desired result easier. However for simulation purposes for arbitrary objects, the summation form is what is required.

This problem seems to be identical to topics done in radar where an object is represented as a summation of isotropic point scatterers. Would anyone have a recommendation on where would be a good source to read up on this problem, or perhaps show me how to do the transform?
 
Engineering news on Phys.org
I am trying to understand how transferring electric from the powerplant to my house is more effective using high voltage. The suggested explanation that the current is equal to the power supply divided by the voltage, and hence higher voltage leads to lower current and as a result to a lower power loss on the conductives is very confusing me. I know that the current is determined by the voltage and the resistance, and not by a power capability - which defines a limit to the allowable...

Similar threads

  • · Replies 2 ·
Replies
2
Views
833
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
2K