How can I show with the definition that f is continuous?

Click For Summary

Discussion Overview

The discussion revolves around demonstrating the continuity of the function $$f(x)=\left\{\begin{matrix} \frac{e^x-1}{x} &, x \neq 0 \\ 1& ,x=0 \end{matrix}\right. , x \in [0,1]$$ using the formal definition of continuity. Participants are exploring the implications of continuity for integrability on the interval [0,1].

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Conceptual clarification

Main Points Raised

  • One participant states that to show continuity at \(x=0\), it is necessary to demonstrate that for any \(\epsilon > 0\), there exists a \(\delta > 0\) such that if \(|x-0| < \delta\), then \(|f(x) - f(0)| < \epsilon\).
  • Another participant corrects the first by clarifying that the correct expression should be \(|f(x) - 1| < \epsilon\) instead of \(|f(x)| < \epsilon\).
  • A different participant provides a limit evaluation to show that \(\lim_{x \to 0} \frac{e^x-1}{x} = 1\) without using L'Hôpital's rule, suggesting an alternative approach to continuity.
  • One participant expands on the series expansion of \(e^x\) to derive the continuity condition, leading to a proposed \(\delta\) value based on bounding the series terms.

Areas of Agreement / Disagreement

Participants appear to agree on the need to demonstrate continuity at \(x=0\) using the formal definition, but there are differing approaches and interpretations regarding the correct expressions and methods to use. The discussion remains unresolved as participants explore various mathematical techniques.

Contextual Notes

Some assumptions about the behavior of the function near \(x=0\) are not fully explored, and the discussion does not resolve the implications of the continuity proof for integrability.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)
I am given this exercise:
$$f(x)=\left\{\begin{matrix}
\frac{e^x-1}{x} &, x \neq 0 \\
1& ,x=0
\end{matrix}\right. , x \in [0,1]$$

Show that $f$ is integrable in $[0,1]$,knowing that if $f:[a,b] \to \mathbb{R}$, $f$ continuous,then $f$ is integrable in $[a,b]$.

So,I have to show that $f$ is continuous at the whole interval $[0,1]$.

It is: $\lim_{x \to 0} \frac{e^x-1}{x}=\lim_{x \to 0} e^x=1=f(0)$
So, $f$ is continuous at $0$

But how can I show it,using the definition of the continuity?

Let $\epsilon>0$.
We want to show that $\exists \delta>0$ such that $\forall x \in [0,1]$ with $|x-0|<\delta \Rightarrow |f(x)-f(0)| < \epsilon \Rightarrow |f(x)|< \epsilon$

How can I continue? :confused:
 
Physics news on Phys.org
Well first of all, if $\displaystyle \begin{align*} \left| f(x) - f(0) \right| < \epsilon \end{align*}$, then $\displaystyle \begin{align*} \left| f(x) - 1 \right| < \epsilon \end{align*}$, not $\displaystyle \begin{align*} \left| f(x) \right| \end{align*}$.
 
evinda said:
Hello! (Smile)
I am given this exercise:
$$f(x)=\left\{\begin{matrix}
\frac{e^x-1}{x} &, x \neq 0 \\
1& ,x=0
\end{matrix}\right. , x \in [0,1]$$

Show that $f$ is integrable in $[0,1]$,knowing that if $f:[a,b] \to \mathbb{R}$, $f$ continuous,then $f$ is integrable in $[a,b]$.

So,I have to show that $f$ is continuous at the whole interval $[0,1]$.

It is: $\lim_{x \to 0} \frac{e^x-1}{x}=\lim_{x \to 0} e^x=1=f(0)$
So, $f$ is continuous at $0$

But how can I show it,using the definition of the continuity?

Let $\epsilon>0$.
We want to show that $\exists \delta>0$ such that $\forall x \in [0,1]$ with $|x-0|<\delta \Rightarrow |f(x)-f(0)| < \epsilon \Rightarrow |f(x)|< \epsilon$

How can I continue? :confused:

The limit...

$\displaystyle \lim_{x \rightarrow 0} \frac {e^{x}-1}{x}\ (1)$

... is demonstrated without using L'Hopital rule starting from the basic definition...$\displaystyle \lim_{\xi \rightarrow \infty} (1 + \frac{1}{\xi})^{\ \xi} = e\ (2)$

Setting $\displaystyle e^{x} = 1 + \frac{1}{\xi}$ we obtain...

$\displaystyle \lim_{x \rightarrow 0} \frac{e^{x} - 1}{x} = \lim_{\xi \rightarrow \infty} \frac{1}{\xi\ \ln (1 + \frac{1}{\xi})} = \lim_{\xi \rightarrow \infty} \frac{1}{ \ln (1 + \frac{1}{\xi})^ {\xi}} = \frac{1}{\ln e} =1\ (3)$

Kind regards$\chi$ $\sigma$
 
Since $\displaystyle \begin{align*} e^x = \sum_{n = 0}^{\infty} \frac{x^n}{n!} \end{align*}$, that means

$\displaystyle \begin{align*} e^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \\ e^x - 1 &= x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \\ \frac{e^x - 1}{x} &= 1 + \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} +\dots \end{align*}$

So if $\displaystyle \begin{align*} \left| f(x) - f(0) \right| < \epsilon \end{align*}$ that means

$\displaystyle \begin{align*} \left| 1 + \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} + \dots - 1 \right| &< \epsilon \\ \left| \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} + \dots \right| &< \epsilon \\ \left| x \right| \left| \frac{1}{2} + \frac{x}{3!} + \frac{x^2}{4!} + \dots \right| &< \epsilon \end{align*}$

Now if we restrict $\displaystyle \begin{align*} |x| < 1 \end{align*}$, that means

$\displaystyle \begin{align*} \left| \frac{1}{2} + \frac{x}{3!} + \frac{x^2}{4!} + \dots \right| &< \left| \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots \right| \\ &= \left| 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots - 1 \right| \\ &= \left| e - 1 \right| \end{align*}$

So that means you can set $\displaystyle \begin{align*} \delta = \min \left\{ 1, \frac{\epsilon}{e - 1} \right\} \end{align*}$ and you can start the proof :)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K