How can I show with the definition that f is continuous?

Click For Summary
SUMMARY

The function defined as $$f(x)=\left\{\begin{matrix} \frac{e^x-1}{x} &, x \neq 0 \\ 1&, x=0 \end{matrix}\right., x \in [0,1]$$ is continuous on the interval [0,1]. The limit as x approaches 0 is established as $\lim_{x \to 0} \frac{e^x-1}{x} = 1$, confirming continuity at that point. To demonstrate continuity using the formal definition, it is shown that for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x - 0| < \delta$, then $|f(x) - f(0)| < \epsilon$. The proof concludes by setting $\delta = \min \left\{ 1, \frac{\epsilon}{e - 1} \right\}$.

PREREQUISITES
  • Understanding of limits and continuity in calculus
  • Familiarity with the exponential function and its properties
  • Knowledge of the formal definition of continuity
  • Basic series expansion of the exponential function
NEXT STEPS
  • Study the formal definition of continuity in detail
  • Learn about the properties of the exponential function, specifically its limits
  • Explore the concept of integrability and its relation to continuity
  • Investigate series expansions and their applications in calculus
USEFUL FOR

Students of calculus, mathematicians, and educators looking to deepen their understanding of continuity and integrability in real analysis.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)
I am given this exercise:
$$f(x)=\left\{\begin{matrix}
\frac{e^x-1}{x} &, x \neq 0 \\
1& ,x=0
\end{matrix}\right. , x \in [0,1]$$

Show that $f$ is integrable in $[0,1]$,knowing that if $f:[a,b] \to \mathbb{R}$, $f$ continuous,then $f$ is integrable in $[a,b]$.

So,I have to show that $f$ is continuous at the whole interval $[0,1]$.

It is: $\lim_{x \to 0} \frac{e^x-1}{x}=\lim_{x \to 0} e^x=1=f(0)$
So, $f$ is continuous at $0$

But how can I show it,using the definition of the continuity?

Let $\epsilon>0$.
We want to show that $\exists \delta>0$ such that $\forall x \in [0,1]$ with $|x-0|<\delta \Rightarrow |f(x)-f(0)| < \epsilon \Rightarrow |f(x)|< \epsilon$

How can I continue? :confused:
 
Physics news on Phys.org
Well first of all, if $\displaystyle \begin{align*} \left| f(x) - f(0) \right| < \epsilon \end{align*}$, then $\displaystyle \begin{align*} \left| f(x) - 1 \right| < \epsilon \end{align*}$, not $\displaystyle \begin{align*} \left| f(x) \right| \end{align*}$.
 
evinda said:
Hello! (Smile)
I am given this exercise:
$$f(x)=\left\{\begin{matrix}
\frac{e^x-1}{x} &, x \neq 0 \\
1& ,x=0
\end{matrix}\right. , x \in [0,1]$$

Show that $f$ is integrable in $[0,1]$,knowing that if $f:[a,b] \to \mathbb{R}$, $f$ continuous,then $f$ is integrable in $[a,b]$.

So,I have to show that $f$ is continuous at the whole interval $[0,1]$.

It is: $\lim_{x \to 0} \frac{e^x-1}{x}=\lim_{x \to 0} e^x=1=f(0)$
So, $f$ is continuous at $0$

But how can I show it,using the definition of the continuity?

Let $\epsilon>0$.
We want to show that $\exists \delta>0$ such that $\forall x \in [0,1]$ with $|x-0|<\delta \Rightarrow |f(x)-f(0)| < \epsilon \Rightarrow |f(x)|< \epsilon$

How can I continue? :confused:

The limit...

$\displaystyle \lim_{x \rightarrow 0} \frac {e^{x}-1}{x}\ (1)$

... is demonstrated without using L'Hopital rule starting from the basic definition...$\displaystyle \lim_{\xi \rightarrow \infty} (1 + \frac{1}{\xi})^{\ \xi} = e\ (2)$

Setting $\displaystyle e^{x} = 1 + \frac{1}{\xi}$ we obtain...

$\displaystyle \lim_{x \rightarrow 0} \frac{e^{x} - 1}{x} = \lim_{\xi \rightarrow \infty} \frac{1}{\xi\ \ln (1 + \frac{1}{\xi})} = \lim_{\xi \rightarrow \infty} \frac{1}{ \ln (1 + \frac{1}{\xi})^ {\xi}} = \frac{1}{\ln e} =1\ (3)$

Kind regards$\chi$ $\sigma$
 
Since $\displaystyle \begin{align*} e^x = \sum_{n = 0}^{\infty} \frac{x^n}{n!} \end{align*}$, that means

$\displaystyle \begin{align*} e^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \\ e^x - 1 &= x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \\ \frac{e^x - 1}{x} &= 1 + \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} +\dots \end{align*}$

So if $\displaystyle \begin{align*} \left| f(x) - f(0) \right| < \epsilon \end{align*}$ that means

$\displaystyle \begin{align*} \left| 1 + \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} + \dots - 1 \right| &< \epsilon \\ \left| \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} + \dots \right| &< \epsilon \\ \left| x \right| \left| \frac{1}{2} + \frac{x}{3!} + \frac{x^2}{4!} + \dots \right| &< \epsilon \end{align*}$

Now if we restrict $\displaystyle \begin{align*} |x| < 1 \end{align*}$, that means

$\displaystyle \begin{align*} \left| \frac{1}{2} + \frac{x}{3!} + \frac{x^2}{4!} + \dots \right| &< \left| \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots \right| \\ &= \left| 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots - 1 \right| \\ &= \left| e - 1 \right| \end{align*}$

So that means you can set $\displaystyle \begin{align*} \delta = \min \left\{ 1, \frac{\epsilon}{e - 1} \right\} \end{align*}$ and you can start the proof :)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K