Elena1
- 24
- 0
$$\log_{2}\left({24}\right) / \log_{96}\left({2}\right) - \log_{2}\left({192}\right) /\log_{12}\left({2}\right)$$
Last edited by a moderator:
The discussion focuses on simplifying the logarithmic expression $$\log_{2}\left({24}\right) / \log_{96}\left({2}\right) - \log_{2}\left({192}\right) /\log_{12}\left({2}\right)$$ using the change of base formula. Participants clarify the application of the formula, specifically $$\log_b y = \frac{\log_2 y}{\log_2 b}$$, to derive intermediate steps. The final simplified expression involves manipulating logarithms with bases 6 and 2, leading to a clearer understanding of logarithmic relationships.
PREREQUISITESStudents, educators, and anyone interested in mastering logarithmic functions and their simplifications in mathematics.
Elena said:$$\log_{2}\left({24}\right) / \log_{96}\left({2}\right) - \log_{2}\left({192}\right) /\log_{12}\left({2}\right)$$
Elena said:i know this...in the end of book i have the solution 3 but i obtained 0 the result
Elena said:$$\log_{2}\left({6*{2}^{2}}\right) /\log_{6*{2}^{4}}\left({2}\right) -\log_{2}\left({3*{2}^{6}}\right)/ \log_{3*{2}^{2}}\left({2}\right)$$
Elena said:finally i obtained $$4 \log_{2}\left({6}\right) / \frac{1}{8}\log_{6}\left({2}\right) -6\log_{2}\left({6}\right) /
\frac{1}{2}\log_{6}\left({2}\right)$$
Elena said:$$$$ \log_{6{2}^{4}}\left({2}\right)=\frac{1}{4}\log_{3*{2}^{2}}\left({2}\right)=\frac{1}{8}\log_{6}\left({2}\right)$$$$
Elena said:$$$$\log_{6{2}^{4}}\left({2}\right)=\frac{1}{4}\log_{3*{2}^{2}}\left({2}\right)=\frac{1}{8}\log_{6}\left({2}\right)how can i write to be clear?Code:
Elena said:$$\log_{6*{2}^{4}}\left({2}\right)=\frac{1}{4}\log_{3*{2}^{2}}\left({2}\right)=\frac{1}{8}\log_{6}\left({2}\right)$$
how can i write to be clear?