How Can I Solve for the Travel Time of a Particle in a Potential?

Click For Summary

Homework Help Overview

The discussion revolves around a problem from quantum mechanics concerning the travel time of a particle in a potential, specifically related to the transition from a velocity equation to a time equation through integration. The original poster expresses difficulty in solving the problem and seeks hints to progress.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the implications of the potential's derivative at a specific point and how it affects the integrability of the travel time equation. There are attempts to clarify the relationship between the potential and the limits of integration, as well as the behavior of the integral near singularities.

Discussion Status

Some participants have provided insights into the mathematical behavior of the integrand and its implications for the travel time, while others are still seeking clarification on their understanding of the problem. There is an ongoing exploration of different cases based on the derivatives of the potential.

Contextual Notes

Participants note the requirement to post their best attempt before receiving assistance, which influences the flow of the discussion. The complexity of the problem is acknowledged, particularly given the mathematical background of the original poster.

haziq
Messages
3
Reaction score
1
Homework Statement
Problem 2 in Chapter 2 of Hall’s QM book. See pictures below
Relevant Equations
See photo below
9DC9B877-BAD4-4B03-943A-F785EF133E35.jpeg
910F8033-9470-490C-9F50-8329C5AAAADC.jpeg
4ADAC378-42EC-4A12-88CA-53E329483451.jpeg

I’ve been trying to solve this for ages. Would really appreciate some hints. Thanks
 
Last edited:
Physics news on Phys.org
Hello @haziq ,
:welcome: ##\qquad ## !​

haziq said:
Homework Statement:: Problem 2 in Chapter 2 of Hall’s QM book. See pictures below
Relevant Equations:: See photo below

solve this for ages

And you are aware that with 'this' you mean the step from $$\dot x(t)=\sqrt{{2\left (E_0-V\left ( x\left (t \right )\right) \right) \over m}} $$ to ##t= ...## by separation ?

PF guidelines require that you actually post your best attempt before we are allowed to assist ...

PS notice how much sharper it looks with ##\LaTeX## ?
##\ ##
 
Hi @BvU, sorry for the confusion. That’s not the problem I was referring to. I just included that for context. That’s actually problem 1 and it was pretty easy to solve. With regards to problem 2, I’m completely lost. Probably because the book is titled Quantum Theory for Mathematicians and I’m not a mathematician. Perhaps I could share my attempt after someone gives me some hints?
 
BvU said:
PF guidelines require that you actually post your best attempt before we are allowed to assist .
 
@BvU Fair enough :smile:. Here’s what I’ve deduced so far (for part a)
  • Assuming ##V’(x_1) \neq 0##, we need to show that ##t=lim_{h \rightarrow x_1} \int_{x_0}^{h} {\sqrt{\frac {m} {E_0 - V(y)}} dy} \in \mathbb{R}## since the upper bound is a vertical asymptote.
  • I *think* ##V’(x_1) \neq 0## implies that ##lim_{x \rightarrow x_1}{E_0 - V(x) \neq 0}##. Not sure how to prove this formally. I just applied the definition of derivative and did some sketchy algebra and thought this is plausible.
Not sure what to do next...
 
  • Like
Likes   Reactions: berkeman
Ad 2a) It's just that the singularity of the integrand at ##y=x_1## is integrable. If ##V'(x_1) \neq 0##, then you have
$$V(y)=V(x_1) + (y-x_1) V'(x_1) + \mathcal{O}[(y-x_1)^2],$$
and thus around the singularity the integral behaves like
$$\Delta t_{\epsilon}=\int_{x_1-\epsilon}^{x_1} \mathrm{d} y \sqrt{\frac{m}{-2V'(x_1)(y-x_1)}}.$$
Since ##V'(x_1)>0## you have
$$\Delta t_{\epsilon}=-\sqrt{2mV'(x_1) (x_1-y)}|_{y=x_1-\epsilon}^{x_1}= \sqrt{\frac{2 m}{V'(x_1)} \epsilon}.$$
The total time is
$$t=\int_{x_0}^{x_1-\epsilon} \mathrm{d} y \sqrt{\frac{m}{2 [E_0-V(y)]}} + \Delta t_{\epsilon}.$$
Since ##t## doesn't depend on ##\epsilon## and ##\Delta t_{\epsilon} \rightarrow 0## for ##\epsilon \rightarrow 0## the total time is finite.

If ##V'(x_1)=0##, the above Taylor expansion starts at best with the quadratic term, i.e.,
$$V(y)=V(x_1) + \frac{1}{2} (y-x_1)^2 V''(x_1) + \mathcal{O}[(y-x_1)^3],$$
and the above analysis shows that ##\Delta t_{\epsilon}## diverges logarithmically, i.e., even in this case the time ##t \rightarrow \infty##. If also ##V''(x_1)=0## the divergence gets worse, i.e., for ##V'(x_1)=0## the time always ##t \rightarrow \infty##.
 
  • Like
Likes   Reactions: strangerep, haziq, BvU and 1 other person

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
2K
Replies
16
Views
4K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K