How Can I Solve for the Travel Time of a Particle in a Potential?

Click For Summary
The discussion focuses on solving for the travel time of a particle in a potential, specifically referencing Problem 2 from Hall’s Quantum Mechanics book. The user expresses confusion and seeks hints to progress, particularly regarding the transition from the velocity equation to the time equation. A key point raised is the behavior of the potential's derivative at a singularity, which affects the integrability of the time integral. The analysis indicates that if the first derivative of the potential is non-zero, the total travel time remains finite, while if it is zero, the travel time diverges logarithmically. The conversation emphasizes the importance of understanding the mathematical framework to solve the problem effectively.
haziq
Messages
3
Reaction score
1
Homework Statement
Problem 2 in Chapter 2 of Hall’s QM book. See pictures below
Relevant Equations
See photo below
9DC9B877-BAD4-4B03-943A-F785EF133E35.jpeg
910F8033-9470-490C-9F50-8329C5AAAADC.jpeg
4ADAC378-42EC-4A12-88CA-53E329483451.jpeg

I’ve been trying to solve this for ages. Would really appreciate some hints. Thanks
 
Last edited:
Physics news on Phys.org
Hello @haziq ,
:welcome: ##\qquad ## !​

haziq said:
Homework Statement:: Problem 2 in Chapter 2 of Hall’s QM book. See pictures below
Relevant Equations:: See photo below

solve this for ages

And you are aware that with 'this' you mean the step from $$\dot x(t)=\sqrt{{2\left (E_0-V\left ( x\left (t \right )\right) \right) \over m}} $$ to ##t= ...## by separation ?

PF guidelines require that you actually post your best attempt before we are allowed to assist ...

PS notice how much sharper it looks with ##\LaTeX## ?
##\ ##
 
Hi @BvU, sorry for the confusion. That’s not the problem I was referring to. I just included that for context. That’s actually problem 1 and it was pretty easy to solve. With regards to problem 2, I’m completely lost. Probably because the book is titled Quantum Theory for Mathematicians and I’m not a mathematician. Perhaps I could share my attempt after someone gives me some hints?
 
BvU said:
PF guidelines require that you actually post your best attempt before we are allowed to assist .
 
@BvU Fair enough :smile:. Here’s what I’ve deduced so far (for part a)
  • Assuming ##V’(x_1) \neq 0##, we need to show that ##t=lim_{h \rightarrow x_1} \int_{x_0}^{h} {\sqrt{\frac {m} {E_0 - V(y)}} dy} \in \mathbb{R}## since the upper bound is a vertical asymptote.
  • I *think* ##V’(x_1) \neq 0## implies that ##lim_{x \rightarrow x_1}{E_0 - V(x) \neq 0}##. Not sure how to prove this formally. I just applied the definition of derivative and did some sketchy algebra and thought this is plausible.
Not sure what to do next...
 
Ad 2a) It's just that the singularity of the integrand at ##y=x_1## is integrable. If ##V'(x_1) \neq 0##, then you have
$$V(y)=V(x_1) + (y-x_1) V'(x_1) + \mathcal{O}[(y-x_1)^2],$$
and thus around the singularity the integral behaves like
$$\Delta t_{\epsilon}=\int_{x_1-\epsilon}^{x_1} \mathrm{d} y \sqrt{\frac{m}{-2V'(x_1)(y-x_1)}}.$$
Since ##V'(x_1)>0## you have
$$\Delta t_{\epsilon}=-\sqrt{2mV'(x_1) (x_1-y)}|_{y=x_1-\epsilon}^{x_1}= \sqrt{\frac{2 m}{V'(x_1)} \epsilon}.$$
The total time is
$$t=\int_{x_0}^{x_1-\epsilon} \mathrm{d} y \sqrt{\frac{m}{2 [E_0-V(y)]}} + \Delta t_{\epsilon}.$$
Since ##t## doesn't depend on ##\epsilon## and ##\Delta t_{\epsilon} \rightarrow 0## for ##\epsilon \rightarrow 0## the total time is finite.

If ##V'(x_1)=0##, the above Taylor expansion starts at best with the quadratic term, i.e.,
$$V(y)=V(x_1) + \frac{1}{2} (y-x_1)^2 V''(x_1) + \mathcal{O}[(y-x_1)^3],$$
and the above analysis shows that ##\Delta t_{\epsilon}## diverges logarithmically, i.e., even in this case the time ##t \rightarrow \infty##. If also ##V''(x_1)=0## the divergence gets worse, i.e., for ##V'(x_1)=0## the time always ##t \rightarrow \infty##.
 
  • Like
Likes strangerep, haziq, BvU and 1 other person
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
2K
Replies
16
Views
4K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 12 ·
Replies
12
Views
554
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K