MHB How can I solve these induction and function problems in my French homework?

  • Thread starter Thread starter Manal
  • Start date Start date
  • Tags Tags
    Homework
Click For Summary
The discussion addresses solving induction and function problems in a French homework assignment. Exercise 1 involves proving points by induction, with point 3 derived from an inequality. Exercise 2 confirms that the symmetric difference is associative and commutative, allowing for cancellation. Exercise 3 suggests graphing the piecewise function f(x) and notes its even nature, while exercise 4 involves enumerating elements of set A and checking their membership in set B through a specific calculation. The forum also emphasizes the importance of following posting guidelines for future inquiries.
Manal
Messages
2
Reaction score
0
I would really appreciate if someone helped me do this homework, btw it's in french Screenshot_20211110_220854.jpg
 
Mathematics news on Phys.org
Welcome to the forum.

In exercise 1 points 1) and 2) are proved by induction on $n$. Point 3 follows from 2) by solving the inequality $$\frac{1}{2^{1+n/2}}<\frac{1}{200}$$.

In exercise 2, point 1) the answer is yes because symmetric difference is associative, commutative and has the property $$A\triangle A=\emptyset$$. So the effect of taking a symmetric difference with $A$ can be canceled.

In exercise 3 you can draw the graph of $f$ on Desmos. In fact, it is easy to draw the graph by hand because $$f(x)=\begin{cases}x^2+x,&x\ge0\\x^2-x,&x<0\end{cases}$$. It is also clear that $f(x)$ is even, i.e., $f(-x)=f(x)$, so it is sufficient to study $f(x)$ for $x\ge0$.

If $g(x)$ is the restriction of $f(x)$ to $\mathbb{R}^+$, then it is clear from the graph that $g$ is a bijection from $\mathbb{R}^+$ to $\mathbb{R}^+$. The inverse $g^{-1}(y)$ is found by solving the equation $x^2+x=y$ for $x$.

In exercise 4 the elements of $A$ can be easily enumerated: $A=\{1,2,3,4,5\}$ (if $\mathbb{N}$ starts from 1). To find if any of them also belong to $B$ we can compute $$\frac{n^2-16}{n-2}$$ for these $n# to see if the result is an integer.

For the future, please read the https://mathhelpboards.com/help/forum_rules/, especially "Show the nature of your question in your thread title", "Do not cheat", "Do not ask more than two questions in a thread or post", "Show some effort" and "Post in English".
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
988
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K