MHB How Can I Solve This Integral Using Complex Integration?

Click For Summary
The integral $$\int_0^\infty e^{-x^2}\cos(kx)dx$$ can be approached using complex integration by considering the function $e^{-z^2}$ over a rectangular contour. A suggested method involves integrating over the upper half-plane, leveraging the even nature of the integrand to relate it to the integral over the entire real line. Another effective approach is utilizing the Laplace Transform, which yields the result $$\int_0^\infty e^{-x^2}\cos(kx)dx = \frac{\sqrt{\pi}}{2} e^{-\frac{k^2}{4}}$$. Discussions also highlight the importance of confirming that certain integrals vanish as the contour is taken to infinity. The conversation emphasizes the versatility of methods in solving this integral, particularly through complex analysis.
pantboio
Messages
43
Reaction score
0
I'm struggling for a long time to solve this integral
$$\int_0^\infty e^{-x^2}cos(kx)dx$$
with $k>0$

I know there are a number of ways, but I'm interested in using complex integration. In particular, I believe that we can solve by integrating $e^{-z^2}$ over the boundary of the rectangule $[-R,R]\times[0,h]$ for a suitable $h$.
What $h$ do you think i should use?
 
Physics news on Phys.org
pantboio said:
I'm struggling for a long time to solve this integral
$$\int_0^\infty e^{-x^2}cos(kx)dx$$
with $k>0$

I know there are a number of ways, but I'm interested in using complex integration. In particular, I believe that we can solve by integrating $e^{-z^2}$ over the boundary of the rectangule $[-R,R]\times[0,h]$ for a suitable $h$.
What $h$ do you think i should use?
Personally I wouldn't use the rectangle. I'd note that the integrand is even so
\int_0^{\infty} e^{-z^2}cos(kz)~dz = \frac{1}{2}\int_{-\infty}^{\infty} e^{-z^2}cos(kz)~dz
and integrate over the upper half plane. (The circular part goes to zero by Jordan's lemma.)

-Dan
 
pantboio said:
I'm struggling for a long time to solve this integral
$$\int_0^\infty e^{-x^2}cos(kx)dx$$
with $k>0$

I know there are a number of ways, but I'm interested in using complex integration. In particular, I believe that we can solve by integrating $e^{-z^2}$ over the boundary of the rectangule $[-R,R]\times[0,h]$ for a suitable $h$.
What $h$ do you think i should use?

A very comfortable way is the use of the Laplace Transform, using the relation...

$\displaystyle \mathcal{L} \{e^{- t^{2}}\}= \frac{\sqrt{\pi}}{2}\ e^{\frac{s^{2}}{4}}\ \text{erfc} (\frac{s}{2})$ (1)

... obtaining...

$\displaystyle \int_{0}^{\infty} e^{- t^{2}} \cos k t\ dt = \frac{\sqrt{\pi}}{2}\ e^{- \frac{k^{2}}{4}}\ \text{Re} \{ \text{erfc} (\frac{i\ k}{2})\} = \frac{\sqrt{\pi}}{2}\ e^{- \frac{k^{2}}{4}}$ (2)

Kind regards$\chi$ $\sigma$
 
Last edited:
my solution:
let $\gamma_R$ be the boundary of the rectangle $[-R,R]\times[0,h]$,for $h$ to determine. Let $f(z)=e^{-z^2}$. Thus
$$\oint_{\gamma_R}f(z)dz=0$$
...but we also have

$$\oint_{\gamma_R}f(z)dz=\oint_{\gamma_1}f +\oint_{\gamma2}f+\oint_{\gamma3}f+\oint_{\gamma_4}f$$
where $\gamma_1(t)=t,t\in[-R,R]$, $\gamma_2(t)=R+ti,t\in[0,h]$ ,$-\gamma_3(t)=t+hi,t\in[-R,R]$ and $-\gamma_4(t)=-R+ti,t\in[0,h]$
Hence we have

$$\oint_{\gamma_1} e^{-z^2}dz=\int_{-R}^{R}e^{-t^2}dt$$

$$\oint_{\gamma_3}e^{-z^2}dz=-\int_{-R}^{R}e^{-(t+hi)^2}dt=-e^{h^2}\int_{-R}^{R}e^{-t^2}e^{i(-2ht)}dt$$

Using the fact that sine is odd, the second integral is

$$-e^{h^2}\int_{-R}^{R}e^{-t^2}cos(2ht)dt$$

Now, settin $I_j=\oint_{\gamma_j}$ , $I$=the integral we want to compute, and choosing $h=\frac{k}{2}$ we have

$0=\int_{-R}^{R}e^{-t^2}dt +I_2+I_4-e^{\frac{k^2}{4}}\int_{-R}^{R}e^{-t^2}cos(kt)dt$

Claim: $I_2$ and $I_4$ go to zero for $r$ going to infinite. If so, passing to the limit i get

$$\sqrt\pi-e^{\frac{k^2}{4}}I=0$$
from which
$I=\frac{\sqrt\pi}{2}e^{-\frac{k^2}{4}}$
So we are left to prove:
1)$I_2$ and $I_4$ tends to zero as $R\rightarrow\infty$

2)$\int_{-\infty}^{\infty}e^{-t^2}dt=\sqrt{\pi}$
 
Last edited:
pantboio said:
$$\int_0^\infty e^{-x^2}cos(kx)dx$$
with $k>0$

First: why k > 0 ?

second : I will try to solve it and confirm your result , which is surely correct .

\int_0^\infty e^{-x^2}cos(kx)dx

I will use the substitution x^2 = t

\int_0^\infty e^{-t}\frac{cos(k\sqrt{t})}{2\sqrt{t}}dt\int_0^\infty e^{-t}\, \frac{\sum^{\infty}_{n=0}\, \frac{(-1)^n(k\sqrt{t})^{2n}}{(2n)!}}{2\sqrt{t}}dt

\frac{1}{2}\int_0^\infty e^{-t}\, \sum^{\infty}_{n=0} \frac{(-1)^n k^{2n}t^{n-\frac{1}{2}}}{(2n)!}\,dt\frac{1}{2}\sum^{\infty}_{n=0} \frac{(-1)^n k^{2n}}{(2n)!}\,\int_0^\infty e^{-t}t^{n-\frac{1}{2}}\, \,dt

\frac{1}{2}\sum^{\infty}_{n=0} \frac{(-1)^n k^{2n}\Gamma{(n+\frac{1}{2})}}{(2n)!}

\frac{1}{2}\sum^{\infty}_{n=0} \frac{(-1)^n k^{2n}\frac{2^{1-2n}\sqrt{\pi}\Gamma{(2n)}}{\Gamma{(n)}}}{(2n)!}\,

\frac{1}{2}\sum^{\infty}_{n=0} \frac{2\sqrt{\pi}(-k^2)^{n}\Gamma{(2n)}}{4^n(2n)!\Gamma{(n)}}\, \,

\frac{1}{2}\sum^{\infty}_{n=0} \frac{2\sqrt{\pi}(-k^2)^{n}(2n-1)!}{(2n)4^n(2n-1)!(n-1)!}\, \,

\frac{1}{2}\sum^{\infty}_{n=0} \frac{\sqrt{\pi}(-\frac{k^2}{4})^{n}}{(n!)}\, \,= \frac{\sqrt{\pi}}{2}e^{-\frac{k^2}{4}}

Clearly we don't need the condition k>0 !
 
topsquark said:
Personally I wouldn't use the rectangle. I'd note that the integrand is even so
\int_0^{\infty} e^{-z^2}cos(kz)~dz = \frac{1}{2}\int_{-\infty}^{\infty} e^{-z^2}cos(kz)~dz
and integrate over the upper half plane. (The circular part goes to zero by Jordan's lemma.)

-Dan

How , would you please illustrate ?
 
ZaidAlyafey said:
How , would you please illustrate ?
Let's take a contour such that we include the whole real axis (from -infinity to infinity) and close it off with a semi-circle going from infinity to -infinty. Of course we really have a half-circle with radius R and we take the limit of R as it goes to infinity at the end.

So the integral will be composed of two parts: the real line and the semi-circle. So we have:

\int_c = \int_{-\infty}^{\infty} + \int_{R} = 2 \pi i \sum \text{residues in upper half plane}

The nice thing about this is that the integral over the semi-circle goes to zero by Jordan's Lemma. So all you are left with calculating the residues in the upper half plane.

-Dan
 
topsquark said:
Let's take a contour such that we include the whole real axis (from -infinity to infinity) and close it off with a semi-circle going from infinity to -infinty. Of course we really have a half-circle with radius R and we take the limit of R as it goes to infinity at the end.

So the integral will be composed of two parts: the real line and the semi-circle. So we have:

\int_c = \int_{-\infty}^{\infty} + \int_{R} = 2 \pi i \sum \text{residues in upper half plane}

The nice thing about this is that the integral over the semi-circle goes to zero by Jordan's Lemma. So all you are left with calculating the residues in the upper half plane.

-Dan

Well, that is not completely correct , first you have to prove that the integral over the semi-circle is zero . Second, the function $e^{-z^2}\cos(kz) $ is entire that means if we enclose it by any simply-connected contour the integral is zero . Actually there are no residues since the function has no singularities so if what you are implying is correct then $\int_c = \int_{-\infty}^{\infty} +0 =0$ that means the integral is equal to zero !
 
ZaidAlyafey said:
Well, that is not completely correct , first you have to prove that the integral over the semi-circle is zero . Second, the function $e^{-z^2}\cos(kz) $ is entire that means if we enclose it by any simply-connected contour the integral is zero . Actually there are no residues since the function has no singularities so if what you are implying is correct then $\int_c = \int_{-\infty}^{\infty} +0 =0$ that means the integral is equal to zero !
Hmmmm...maybe I need to brush up on Jordan's lemma.

-Dan
 
  • #10
The integral may be rewritten as

$$ \begin{aligned} I=\int_0^\infty e^{-x^2}\cos(kx) dx &= \frac{1}{2}\int_{-\infty}^{\infty} e^{-x^2}\cos(kx) dx \\ &= \frac{1}{2} \text{Re} \left[\int_{-\infty}^{\infty} e^{-x^2+ikx} dx\right]\end{aligned}$$

Here, we can use the general formula

$$ \int_{-\infty}^\infty e^{-x^2+bx+c}dx = \sqrt{\pi} e^{b^2/4+c}$$

with $b=ik$ and $c=0$.

$$ I =\frac{1}{2} \text{Re} \left[\sqrt{\pi} e^{-k^2/4}\right] = \frac{\sqrt{\pi}}{2} e^{-k^2/4}$$

The formula, I have used can be proved in the following manner:

$$
\begin{aligned}
\int_{-\infty}^\infty e^{-x^2+bx+c}dx &= \int_{-\infty}^{\infty} \exp \left\{{-\left( x^2-bx+\frac{b^2}{4}-c-\frac{b^2}{4}\right)} \right\}dx \\
&= e^{b^2/4+c} \int_{-\infty}^\infty e^{-(x-b/2)^2}dx \\
&= \sqrt{\pi} e^{b^2/4+c}
\end{aligned}
$$

The last integral has been done with the substitution $t=x-b/2$.
 
  • #11
sbhatnagar said:
The formula, I have used can be proved in the following manner:

$$
\begin{aligned}
\int_{-\infty}^\infty e^{-x^2+bx+c}dx &= \int_{-\infty}^{\infty} \exp \left\{{-\left( x^2-bx+\frac{b^2}{4}-c-\frac{b^2}{4}\right)} \right\}dx \\
&= e^{b^2/4+c} \int_{-\infty}^\infty e^{-(x-b/2)^2}dx \\
&= \sqrt{\pi} e^{b^2/4+c}
\end{aligned}
$$

The last integral has been done with the substitution $t=x-b/2$.

This is not enough to deduce that the formula can be analytically continued to be used for b is complex .
 
Last edited:
  • #12
sbhatnagar said:
$$
\begin{aligned}
\int_{-\infty}^\infty e^{-x^2+bx+c}dx &= \int_{-\infty}^{\infty} \exp \left\{{-\left( x^2-bx+\frac{b^2}{4}-c-\frac{b^2}{4}\right)} \right\}dx \\
&= e^{b^2/4+c} \int_{-\infty}^\infty e^{-(x-b/2)^2}dx \\
&= \sqrt{\pi} e^{b^2/4+c}
\end{aligned}
$$

The last integral has been done with the substitution $t=x-b/2$.

So we have the integral $ \int_{-\infty}^\infty e^{-(x-b/2)^2}dx$

Now if we assume that b is complex the substitution you made is a bit tricky .why ?
Assume that $b= ic $ for simplicity Re(b)=0 .
So let us make the substitution $t= x-\frac{b}{2}= x-\frac{ic}{2}$ but we know that when making a substitution this applies to the bounds of integration as well , but wait how do we do that ?
Well, the limits of integration after substitution will not still be the same so they will change.

$$\lim_{R\to \infty }\int^{R-\frac{ic}{2}}_{-R-\frac{ic}{2}}e^{-t^2}\, dt$$

Now this looks familiar in the complex plane it is an integration a long a closed rectangle contour the has and infinite width along the x-axis and a height equal to c/2 .
To solve this we apply the method that pantboio described earlier which is a contour integration .
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
922
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K