How Can I Solve This Second Order Linear ODE Problem?

Click For Summary

Discussion Overview

The discussion revolves around solving a second-order linear ordinary differential equation (ODE) of the form $ax^2y''+bxy'+cy=0$, specifically when the solution is proposed as $y=x^r\ln(x)$ under the condition $(b-a)^2-4ac=0$. Participants explore the derivation of the general solution, the application of the product rule, and the simplification of terms involving logarithms.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses difficulty in deriving the general solution and simplifying the resulting expressions, particularly with logarithmic terms.
  • Another participant provides a detailed derivation of the second derivative using the product rule, confirming the earlier calculations but noting that the substitution into the ODE still leads to complications.
  • There is a discussion about the discriminant of the quadratic equation formed and how it relates to the roots of the equation.
  • One participant reflects on their approach to canceling terms involving $\ln(x)$ and acknowledges that this may have hindered their progress.
  • A later reply confirms that it is acceptable to have a function in $r$ for $y=(x^r)\ln(x)$ and suggests a form for the general solution involving constants $c_1$ and $c_2$.

Areas of Agreement / Disagreement

Participants generally agree on the form of the solution and the steps involved in deriving the second derivative. However, there remains uncertainty regarding the simplification of the resulting expressions and the handling of logarithmic terms, indicating that the discussion is not fully resolved.

Contextual Notes

Participants note challenges in simplifying expressions due to the presence of logarithmic terms, which complicate the formation of a standard quadratic equation. There are also references to specific algebraic manipulations that may have been overlooked or incorrectly applied.

Who May Find This Useful

This discussion may be useful for students or individuals working on differential equations, particularly those involving logarithmic functions and seeking to understand the nuances of deriving solutions in this context.

danthatdude
Messages
3
Reaction score
0
I'm having a lot of trouble with this problem. I'm also having a lot of trouble inputting it into LaTeX. I hope you can follow even though the markup isn't good.

I'm trying to find a formula for the general solution of $ax^2y''+bxy'+cy=0$ where $y=x^r\ln(x)$ when $(b-a)^2-4ac=0$;

using product rule,
i got

$y'=x^{r-1}+rx^{r-1}\ln(x)$
and $y"=(r-1)x^{r-2}+rx^{r-2}\ln(x)$

substituting y, y', and y" into the differential equation, I got

$a((r-1)+r+r(r-1)\ln(x))+b(1+r\ln(x)+c\ln(x)=0$

(Since every term had $x^r$ after distributing $x^2$, x into the parentheses, I simplified it to 1 by dividing the entire equation by $x^r$).

I end up with
$a(((r-1)(r)\ln(x))+(2r-1))+b(1+r\ln(x)+c\ln(x)=0$

$a(r^2\ln(x)-r\ln(x)+2r-1)+b+br\ln(x)+c\ln(x)=0$

I'm not able to simplify this quadratic in a form that gives the solution to the roots with $(b-a)^2-4ac$ under the radical. (I solved a problem similar to this with a simpler function for y).

Can anybody point out where I went wrong, and how to arrive at the solution step by step? I went over the algebra very carefully but I can't pinpoint where my algebra went wrong. I feel like I'm very close to the solution but I went wrong at some very elementary step.

I also tried doing the markup for the problem with LaTeX but it wasn't typesetting correctly -- I don't have a lot of experience with it. I hope you're able to follow.
 
Last edited by a moderator:
Physics news on Phys.org
danthatdude said:
I'm having a lot of trouble with this problem. I'm also having a lot of trouble inputting it into LaTeX. I hope you can follow even though the markup isn't good.

I'm trying to find a formula for the general solution of $ax^2y''+bxy'+cy=0$ where $y=x^r\ln(x)$ when $(b-a)^2-4ac=0$;

using product rule,
i got

$y'=x^{r-1}+rx^{r-1}\ln(x)$
and $y"=(r-1)x^{r-2}+rx^{r-2}\ln(x)$

substituting y, y', and y" into the differential equation, I got

$a((r-1)+r+r(r-1)\ln(x))+b(1+r\ln(x)+c\ln(x)=0$

(Since every term had $x^r$ after distributing $x^2$, x into the parentheses, I simplified it to 1 by dividing the entire equation by $x^r$).

I end up with
$a(((r-1)(r)\ln(x))+(2r-1))+b(1+r\ln(x)+c\ln(x)=0$

$a(r^2\ln(x)-r\ln(x)+2r-1)+b+br\ln(x)+c\ln(x)=0$

I'm not able to simplify this quadratic in a form that gives the solution to the roots with $(b-a)^2-4ac$ under the radical. (I solved a problem similar to this with a simpler function for y).

Can anybody point out where I went wrong, and how to arrive at the solution step by step? I went over the algebra very carefully but I can't pinpoint where my algebra went wrong. I feel like I'm very close to the solution but I went wrong at some very elementary step.

I also tried doing the markup for the problem with LaTeX but it wasn't typesetting correctly -- I don't have a lot of experience with it. I hope you're able to follow.

When you derivate $y'=x^{r-1}+rx^{r-1}\ln(x)$ you want to derivate a product.
So, the second derivative of $y$ is the following:
$$y''=(x^{r-1}+rx^{r-1}\ln(x))'=(x^{r-1})'+(rx^{r-1}\ln(x))' \\ =(r-1)x^{r-2}+(rx^{r-1})' \ln(x)+rx^{r-1}(\ln(x))'=(r-1)x^{r-2}+r(r-1)x^{r-2} \ln(x)+rx^{r-1}\frac{1}{x} \\ =(r-1)x^{r-2}+r(r-1)x^{r-2} \ln(x)+rx^{r-2}$$
 
mathmari said:
When you derivate $y'=x^{r-1}+rx^{r-1}\ln(x)$ you want to derivate a product.
So, the second derivative of $y$ is the following:
$$y''=(x^{r-1}+rx^{r-1}\ln(x))'=(x^{r-1})'+(rx^{r-1}\ln(x))' \\ =(r-1)x^{r-2}+(rx^{r-1})' \ln(x)+rx^{r-1}(\ln(x))'=(r-1)x^{r-2}+r(r-1)x^{r-2} \ln(x)+rx^{r-1}\frac{1}{x} \\ =(r-1)x^{r-2}+r(r-1)x^{r-2} \ln(x)+rx^{r-2}$$

oops, i left out that last term, yes I got what you have for the second derivative.

But the issue still remains when I substitute it into the expression

I end up with a[(r-1)+r+(r)(r-1)ln(x)]+b[r(ln(x))]+cln(x)=0

after simplifying. the natural logarithm term is what's making it hard to get it into the quadratic equation in terms of r that I need it to be to be able to factor it into

[(a-b)+sqrt((b-a)^2-4ac)]/2a
 
danthatdude said:
oops, i left out that last term, yes I got what you have for the second derivative.

But the issue still remains when I substitute it into the expression

I end up with a[(r-1)+r+(r)(r-1)ln(x)]+b[r(ln(x))]+cln(x)=0

after simplifying. the natural logarithm term is what's making it hard to get it into the quadratic equation in terms of r that I need it to be to be able to factor it into

[(a-b)+sqrt((b-a)^2-4ac)]/2a

$y=x^r \ln{(x)}$
$y'=x^{r-1}+rx^{r-1}\ln{(x)}$
$y''=(r-1)x^{r-2}+r(r-1)x^{r-2}\ln{(x)}+rx^{r-2}$

$$ax^2y''+bxy'+cy=0 \\ \Rightarrow ax^2 \left ( (r-1)x^{r-2}+r(r-1)x^{r-2}\ln{(x)}+rx^{r-2} \right )+bx \left ( x^{r-1}+rx^{r-1}\ln{(x)} \right )+cx^r \ln{(x)}=0 \\ \Rightarrow ax^r \left ( (r-1)+r(r-1)\ln{(x)}+r\right )+bx^r \left ( 1+r\ln{(x)} \right )+cx^r \ln{(x)}=0 \\ \Rightarrow x^r \left ( a \left ( 2r-1+r(r-1)\ln{(x)}\right )+b \left ( 1+r\ln{(x)} \right )+c \ln{(x)} \right )=0 \\ \Rightarrow x^r \left ( a(2r-1)+ar(r-1)\ln{(x)}+ b+br\ln{(x)} +c \ln{(x)} \right )=0 \\ \Rightarrow x^r \left ( 2ar-a+(ar^2-ar)\ln{(x)}+ b+br\ln{(x)} +c \ln{(x)} \right )=0 \\ \Rightarrow x^r \left ( a \ln{(x)} r^2+(2a+(b-a) \ln{(x)})r+(c\ln{(x)}+(b-a))\right )=0 \\ \Rightarrow a \ln{(x)} r^2+(2a+(b-a) \ln{(x)})r+(c\ln{(x)}+(b-a))=0 $$

The discriminant is equal to $$ \Delta=(2a+(b-a) \ln{(x)})^2-4 \cdot a \ln{(x)} \cdot (c\ln{(x)}+(b-a)) \\ =4a^2+4a(b-a) \ln{(x)}+(b-a)^2 \ln^2{(x)}-4ac \ln^2{(x)}-4a(b-a)\ln{(x)} \\ = 4a^2+\left ( (b-a)^2 -4ac \right )\ln^2{(x)} $$ Therefore, the solutions are $$ r_{1,2}=\frac{-(2a+(b-a) \ln{(x)}) \pm \sqrt{4a^2+\left ( (b-a)^2 -4ac \right )\ln^2{(x)}}}{2a \ln{(x)}}$$
 
mathmari said:
$y=x^r \ln{(x)}$
$y'=x^{r-1}+rx^{r-1}\ln{(x)}$
$y''=(r-1)x^{r-2}+r(r-1)x^{r-2}\ln{(x)}+rx^{r-2}$

$$ax^2y''+bxy'+cy=0 \\ \Rightarrow ax^2 \left ( (r-1)x^{r-2}+r(r-1)x^{r-2}\ln{(x)}+rx^{r-2} \right )+bx \left ( x^{r-1}+rx^{r-1}\ln{(x)} \right )+cx^r \ln{(x)}=0 \\ \Rightarrow ax^r \left ( (r-1)+r(r-1)\ln{(x)}+r\right )+bx^r \left ( 1+r\ln{(x)} \right )+cx^r \ln{(x)}=0 \\ \Rightarrow x^r \left ( a \left ( 2r-1+r(r-1)\ln{(x)}\right )+b \left ( 1+r\ln{(x)} \right )+c \ln{(x)} \right )=0 \\ \Rightarrow x^r \left ( a(2r-1)+ar(r-1)\ln{(x)}+ b+br\ln{(x)} +c \ln{(x)} \right )=0 \\ \Rightarrow x^r \left ( 2ar-a+(ar^2-ar)\ln{(x)}+ b+br\ln{(x)} +c \ln{(x)} \right )=0 \\ \Rightarrow x^r \left ( a \ln{(x)} r^2+(2a+(b-a) \ln{(x)})r+(c\ln{(x)}+(b-a))\right )=0 \\ \Rightarrow a \ln{(x)} r^2+(2a+(b-a) \ln{(x)})r+(c\ln{(x)}+(b-a))=0 $$

The discriminant is equal to $$ \Delta=(2a+(b-a) \ln{(x)})^2-4 \cdot a \ln{(x)} \cdot (c\ln{(x)}+(b-a)) \\ =4a^2+4a(b-a) \ln{(x)}+(b-a)^2 \ln^2{(x)}-4ac \ln^2{(x)}-4a(b-a)\ln{(x)} \\ = 4a^2+\left ( (b-a)^2 -4ac \right )\ln^2{(x)} $$ Therefore, the solutions are $$ r_{1,2}=\frac{-(2a+(b-a) \ln{(x)}) \pm \sqrt{4a^2+\left ( (b-a)^2 -4ac \right )\ln^2{(x)}}}{2a \ln{(x)}}$$

Thank you so much. It looks like I got up to the very last step before the discriminant...I just factored differently and canceled x^r in earlier steps. I think had I not been trying to find a way to algebraically cancel out ln(x) I could have had the solution by using the formula for roots of a quadratic. I thought I had to cancel out ln(x).

So it's ok to have a function in r for y=(x^r)ln(x)?
 
danthatdude said:
So it's ok to have a function in r for y=(x^r)ln(x)?

Yes! The general solution will be of the form $$y(x)=\left ( c_1 x^{r_1}+c_2 x^{r_2} \right ) \ln{(x)}$$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K