How can I take the derivative?

  • Context: Graduate 
  • Thread starter Thread starter etotheipi
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
SUMMARY

The discussion focuses on calculating the functional derivative of the action \( S[\Phi] \) with respect to the time derivative \( \partial_t \Phi(x) \) in the context of field theory. The action is defined as \( S[\Phi] = \int_M dt d^3 x \sqrt{-g} \left( -\frac{1}{2}g^{ab} \partial_a \Phi \partial_b \Phi - \frac{1}{2}m^2 \Phi^2\right) \). Participants explore the definition of the canonical momentum \( \Pi(x) \) and the proper formulation of the functional derivative \( \frac{\delta S[\Phi]}{\delta (\partial_0 \Phi)} \). The discussion highlights the necessity of understanding the chain rule in functional derivatives and the relationship between variations in the action and the canonical momentum.

PREREQUISITES
  • Understanding of functional derivatives in field theory
  • Familiarity with the action principle and Lagrangian mechanics
  • Knowledge of metric tensors and spacetime geometry
  • Basic concepts of canonical momentum in classical mechanics
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equations in field theory
  • Learn about the properties of functional derivatives and their applications
  • Explore the canonical formalism in field theory, focusing on Hamiltonian mechanics
  • Investigate the role of metrics in general relativity and their implications in field theory
USEFUL FOR

Physicists, particularly those specializing in theoretical physics, field theory, and general relativity, as well as students seeking to deepen their understanding of action principles and functional derivatives.

etotheipi
The action considered is \begin{align*}
S[\Phi] = \int_M dt d^3 x \sqrt{-g} \left( -\frac{1}{2}g^{ab} \partial_a \Phi \partial_b \Phi - \frac{1}{2}m^2 \Phi^2\right)
\end{align*}I can "see" unrigorously that variation with respect to ##\partial_t \Phi(x)## it is going to be\begin{align*}
\frac{\delta S}{\delta(\partial_t \Phi(x))} &= -\frac{1}{2}\sqrt{-g} g^{ab} \frac{\delta}{\delta(\partial_t \Phi(x))} \left( \partial_a \Phi \partial_b \Phi \right) \\

&= -\frac{1}{2}\sqrt{-g} g^{ab} \cdot 2 \partial_a \Phi \delta^t_b \\

&= -\sqrt{-g} g^{at} \partial_a \Phi \\

&= \sqrt{h} n^{a} \partial_a \Phi
\end{align*}How do I do this calculation properly? For instance to find the functional variation with respect to ##\Phi## I could consider ##\lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left( S[\Phi + \epsilon \alpha] - S[\Phi] \right)##. But how do I write it when considering the functional derivative of ##S## with respect to ##\partial_t \Phi##; do I let the action have a second argument ##S = S[\Phi, \partial_a \Phi]## and proceed from there?
 
Physics news on Phys.org
Why do you need such a strange derivative? I don't really see how such a derivative would be defined, maybe if you give me some more context I can help
 
  • Like
Likes   Reactions: etotheipi
##(M, g_{ab})## is a globally hyperbolic spacetime and the metric is here written ##ds^2 = -N^2 dt^2 + h_{ij} (dx^i + N^i dt)(dx^j + N^j dt)## with ##t## a global time coordinate labelling the cauchy surfaces ##\Sigma_t## of normal ##-N(dt)_a## and induced metric ##h_{ab}##, such that ##\sqrt{-g} = N\sqrt{h}##.

The aim is to find the canonical momentum ##\Pi(x)## conjugate to ##\Phi## by varying ##S## with respect to ##\partial_t \Phi(x)##
 
Ok, usually when one has an action of the form
$$S = \int \mathscr{L}(\Phi, \partial_\mu \Phi, t) d^4 x$$
the canonical momentum is defined as
$$\Pi(x)=\frac{\partial \mathscr{L}(\Phi, \partial_\mu \Phi, t)}{\partial(\partial_0\Phi)}$$
This one is almost immediate to compute and indeed gives the answer you have in #1. But, otherwise, I don't know how one is supposed to define something like
$$\frac{\delta S[\Phi]}{\delta (\partial_0 \Phi)}$$
At first, something like that seems nonsensical to me, but maybe there's a way to properly define such a thing...
 
  • Like
Likes   Reactions: vanhees71 and etotheipi
Yeah, it's a bit strange. Landau & Lifshitz explained similar sorts of things, e.g. varying the action with respect to the co-ordinates (i.e. considering only admissible trajectories between ##a \longrightarrow b## and keeping ##(\delta x^i)_a = 0## but ##(\delta x^i)_b## variable) then you can show that$$\delta S = -mcu_i \delta x^i \implies p_i = - \frac{\partial S}{\partial x^i}$$so the time-component of the momentum four-vector would just be ##p_t = - \partial S / \partial t##.

I figured the motivation for ##\Pi(x) = \delta S / \delta (\partial_t \Phi)## in the OP would be analogous to that but I don't know how to formalise that at all. I don't know any field theory, really :frown:
 
Indeed, now that I think about it, since functional derivatives have the chain rule, maybe we can write it like
$$\frac{\delta S[\Phi]}{\delta (\partial_0 \Phi)} = \frac{\delta S[\Phi]}{\delta \Phi}\frac{\delta \Phi}{\delta (\partial_0 \Phi)}$$
Then the first derivative is the usual one that is used to derive E-L equations, the problem is the second term.
We know that $$\frac{\delta (\partial_0 \Phi)(y)}{\delta \Phi(x)}=-\partial_0 \delta^{(4)}(x-y),$$ but I don't know if there exists a property for functional derivatives that allow us to invert this, similar to normal derivatives.
 
  • Like
Likes   Reactions: vanhees71 and etotheipi

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K