MHB How Can Matrix Powers and Group Isomorphisms Illuminate Group Theory?

Click For Summary
The discussion focuses on proving two key concepts in group theory related to matrix powers and isomorphisms. The first part requires proving by induction that the k-th power of a rotation matrix corresponds to the rotation by k times the angle theta. The second part establishes that the special orthogonal group SO(2, R) is isomorphic to the circle group S^1, emphasizing the relationship between orthogonal matrices and rotations. A hint is provided for the second proof to assist participants. Sudharaka successfully answered this week's problem, showcasing the application of these group theory principles.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem (I'm going to give group theory another shot).

-----

Problem: (i) Prove, by induction on $k\geq 1$, that

\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^k = \begin{bmatrix}\cos(k\theta) & -\sin(k\theta)\\ \sin(k\theta) & \cos(k\theta)\end{bmatrix}.\]

(ii) Prove that the special orthogonal group $SO(2,\mathbb{R}) = \{A\in O(2,\mathbb{R}) : \det A=1\}$ is isomorphic to the circle group $S^1$.

Remark: For part (ii), recall that the orthogonal group is defined as $O(2,\mathbb{R}) = \{A\in GL(2,\mathbb{R}): A^TA=AA^T = I\}$. I'll also provide a hint for part (ii):

Consider the map $\varphi:\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\mapsto (\cos\theta,\sin\theta)$.

-----

 
Physics news on Phys.org
This week's question was correctly answered by Sudharaka. You can find his answer below.

i) For \(k=1\) the statement is obviously true. Suppose that the statement is true for \(k=p\in\mathbb{Z}^{+}\). That is,

\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^p = \begin{bmatrix}\cos p\theta & -\sin p\theta\\ \sin p\theta& \cos p\theta\end{bmatrix}\]Then,\begin{eqnarray}\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^{p+1}&=&\begin{bmatrix} \cos p\theta & -\sin p\theta\\ \sin p\theta & \cos p\theta\end{bmatrix}\begin{bmatrix}\cos \theta & -\sin\theta\\ \sin\theta & \cos \theta\end{bmatrix}\\&=&\begin{bmatrix}\cos p\theta\cos\theta-\sin p\theta\sin\theta & -\cos p\theta\sin\theta-\sin p\theta\cos\theta\\ \sin p\theta\cos\theta+cos p\theta\sin\theta & -\sin p\theta\sin\theta+\cos p\theta\cos\theta\end{bmatrix}\\&=&\begin{bmatrix}\cos (p+1)\theta & -\sin (p+1)\theta\\ \sin (p+1)\theta& \cos (p+1)\theta\end{bmatrix}\end{eqnarray}Therefore the statement is true for \(n=p+1\). By mathematical induction,\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^k = \begin{bmatrix}\cos(k\theta) & -\sin(k\theta)\\ \sin(k\theta) & \cos(k\theta)\end{bmatrix}\mbox{ for }k\in\mathbb{Z}^{+}\]Q.E.Dii) The circle group can be defined as \(S^{1}=\left\{(\cos\theta, \sin\theta)\,:\,\theta\in[0,2\pi)\right\}\) where the binary operation is given by,\[(\cos\theta_1, \sin\theta_1)(\cos\theta_2, \sin\theta_2)=(\cos[\theta_1+\theta_2],\sin[\theta_1+\theta_2])\]Define, \(\varphi: SO(2,\mathbb{R}) \rightarrow S^{1}\) by \(\varphi:\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\mapsto (\cos\theta,\sin\theta)\)Take any, \(\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix},\,\begin{bmatrix}\cos \theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\in SO(2,\mathbb{R}) \) such that,\[\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}=\begin{bmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\]Then,\[\cos\theta_1=\cos\theta_2\mbox{ and }\sin\theta_1=\sin\theta_2\]\[\Rightarrow (\cos\theta_1,\sin\theta_1)=(\cos\theta_2,\sin \theta_2)\]\[\therefore \varphi\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}=\varphi\begin{bmatrix} \cos \theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\]Hence \(\varphi\) is a well defined function.Take any, \( (\cos\theta_1,\sin\theta_1), (\cos\theta_2,\sin \theta_2)\in S^{1}\) such that,\[(\cos\theta_1,\sin\theta_1)=(\cos\theta_2,\sin \theta_2)\]\[\Rightarrow \cos\theta_1=\cos\theta_2\mbox{ and }\sin\theta_1=\sin\theta_2\]\[\Rightarrow\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}=\begin{bmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\]Therefore \(\varphi\) is injective.Take any, \((\cos\theta,\sin\theta)\in S^{1}\). Then there exist \(\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\in SO(2,\mathbb{R}) \) such that,\[\varphi\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}=(\cos\theta,\sin\theta)\]Thereofore \(\varphi\) is surjective.Consider \(\varphi\left[\begin{pmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{pmatrix}\begin{pmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{pmatrix}\right]\)\begin{eqnarray}\varphi\left[\begin{pmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{pmatrix}\begin{pmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{pmatrix}\right]&=&\varphi\begin{bmatrix}\cos(\theta_1+\theta_2) & -\sin(\theta_1+\theta_2)\\ \sin(\theta_1+\theta_2) & \cos(\theta_1+\theta_2)\end{bmatrix}\\&=&(\cos[\theta_1+\theta_2],\sin[\theta_1+\theta_2])\\&=&(\cos\theta_1, \sin\theta_1)(\cos\theta_2, \sin\theta_2)\\&=&\varphi\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}\,\varphi\begin{bmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\end{eqnarray}Therefore \(\varphi\) is a homomorphism.\[\therefore SO(2,\mathbb{R})\cong S^{1}\]Q.E.D
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
677
  • · Replies 12 ·
Replies
12
Views
3K
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K