How Can Matrix Powers and Group Isomorphisms Illuminate Group Theory?

Click For Summary
SUMMARY

The discussion centers on proving two key concepts in group theory involving matrix powers and group isomorphisms. First, it establishes that the k-th power of the rotation matrix \(\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\) equals \(\begin{bmatrix}\cos(k\theta) & -\sin(k\theta)\\ \sin(k\theta) & \cos(k\theta)\end{bmatrix}\) through induction. Second, it demonstrates that the special orthogonal group \(SO(2,\mathbb{R})\) is isomorphic to the circle group \(S^1\), leveraging the definition of the orthogonal group \(O(2,\mathbb{R})\) as matrices satisfying \(A^TA=AA^T = I\).

PREREQUISITES
  • Understanding of matrix operations and properties
  • Familiarity with group theory concepts, particularly orthogonal groups
  • Knowledge of induction proofs in mathematics
  • Basic understanding of trigonometric functions and their properties
NEXT STEPS
  • Study the properties of the special orthogonal group \(SO(2,\mathbb{R})\)
  • Learn about the structure and properties of the circle group \(S^1\)
  • Explore induction proofs in more complex mathematical contexts
  • Investigate the applications of group theory in physics and engineering
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in the applications of group theory in various fields, including physics and engineering.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem (I'm going to give group theory another shot).

-----

Problem: (i) Prove, by induction on $k\geq 1$, that

\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^k = \begin{bmatrix}\cos(k\theta) & -\sin(k\theta)\\ \sin(k\theta) & \cos(k\theta)\end{bmatrix}.\]

(ii) Prove that the special orthogonal group $SO(2,\mathbb{R}) = \{A\in O(2,\mathbb{R}) : \det A=1\}$ is isomorphic to the circle group $S^1$.

Remark: For part (ii), recall that the orthogonal group is defined as $O(2,\mathbb{R}) = \{A\in GL(2,\mathbb{R}): A^TA=AA^T = I\}$. I'll also provide a hint for part (ii):

Consider the map $\varphi:\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\mapsto (\cos\theta,\sin\theta)$.

-----

 
Physics news on Phys.org
This week's question was correctly answered by Sudharaka. You can find his answer below.

i) For \(k=1\) the statement is obviously true. Suppose that the statement is true for \(k=p\in\mathbb{Z}^{+}\). That is,

\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^p = \begin{bmatrix}\cos p\theta & -\sin p\theta\\ \sin p\theta& \cos p\theta\end{bmatrix}\]Then,\begin{eqnarray}\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^{p+1}&=&\begin{bmatrix} \cos p\theta & -\sin p\theta\\ \sin p\theta & \cos p\theta\end{bmatrix}\begin{bmatrix}\cos \theta & -\sin\theta\\ \sin\theta & \cos \theta\end{bmatrix}\\&=&\begin{bmatrix}\cos p\theta\cos\theta-\sin p\theta\sin\theta & -\cos p\theta\sin\theta-\sin p\theta\cos\theta\\ \sin p\theta\cos\theta+cos p\theta\sin\theta & -\sin p\theta\sin\theta+\cos p\theta\cos\theta\end{bmatrix}\\&=&\begin{bmatrix}\cos (p+1)\theta & -\sin (p+1)\theta\\ \sin (p+1)\theta& \cos (p+1)\theta\end{bmatrix}\end{eqnarray}Therefore the statement is true for \(n=p+1\). By mathematical induction,\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^k = \begin{bmatrix}\cos(k\theta) & -\sin(k\theta)\\ \sin(k\theta) & \cos(k\theta)\end{bmatrix}\mbox{ for }k\in\mathbb{Z}^{+}\]Q.E.Dii) The circle group can be defined as \(S^{1}=\left\{(\cos\theta, \sin\theta)\,:\,\theta\in[0,2\pi)\right\}\) where the binary operation is given by,\[(\cos\theta_1, \sin\theta_1)(\cos\theta_2, \sin\theta_2)=(\cos[\theta_1+\theta_2],\sin[\theta_1+\theta_2])\]Define, \(\varphi: SO(2,\mathbb{R}) \rightarrow S^{1}\) by \(\varphi:\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\mapsto (\cos\theta,\sin\theta)\)Take any, \(\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix},\,\begin{bmatrix}\cos \theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\in SO(2,\mathbb{R}) \) such that,\[\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}=\begin{bmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\]Then,\[\cos\theta_1=\cos\theta_2\mbox{ and }\sin\theta_1=\sin\theta_2\]\[\Rightarrow (\cos\theta_1,\sin\theta_1)=(\cos\theta_2,\sin \theta_2)\]\[\therefore \varphi\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}=\varphi\begin{bmatrix} \cos \theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\]Hence \(\varphi\) is a well defined function.Take any, \( (\cos\theta_1,\sin\theta_1), (\cos\theta_2,\sin \theta_2)\in S^{1}\) such that,\[(\cos\theta_1,\sin\theta_1)=(\cos\theta_2,\sin \theta_2)\]\[\Rightarrow \cos\theta_1=\cos\theta_2\mbox{ and }\sin\theta_1=\sin\theta_2\]\[\Rightarrow\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}=\begin{bmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\]Therefore \(\varphi\) is injective.Take any, \((\cos\theta,\sin\theta)\in S^{1}\). Then there exist \(\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\in SO(2,\mathbb{R}) \) such that,\[\varphi\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}=(\cos\theta,\sin\theta)\]Thereofore \(\varphi\) is surjective.Consider \(\varphi\left[\begin{pmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{pmatrix}\begin{pmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{pmatrix}\right]\)\begin{eqnarray}\varphi\left[\begin{pmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{pmatrix}\begin{pmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{pmatrix}\right]&=&\varphi\begin{bmatrix}\cos(\theta_1+\theta_2) & -\sin(\theta_1+\theta_2)\\ \sin(\theta_1+\theta_2) & \cos(\theta_1+\theta_2)\end{bmatrix}\\&=&(\cos[\theta_1+\theta_2],\sin[\theta_1+\theta_2])\\&=&(\cos\theta_1, \sin\theta_1)(\cos\theta_2, \sin\theta_2)\\&=&\varphi\begin{bmatrix}\cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1\end{bmatrix}\,\varphi\begin{bmatrix} \cos\theta_2 & -\sin\theta_2\\ \sin\theta_2 & \cos\theta_2\end{bmatrix}\end{eqnarray}Therefore \(\varphi\) is a homomorphism.\[\therefore SO(2,\mathbb{R})\cong S^{1}\]Q.E.D
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
946
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K