How Can Objects Be Compressed Beyond Their Physical Space?

Click For Summary
Compression of objects like Earth can lead to increased gravitational forces, potentially resulting in black holes once a critical density is reached. The concept of minimum size for compression is tied to the Schwarzschild radius, which for Earth is about 8 inches; compressing it below this radius forms an event horizon. As matter is compressed, atomic structure breaks down, transitioning first to electron degenerate matter and then to neutronium, where electrons combine with protons. Theories suggest that fundamental particles may not have a defined size, and compression may be limited by quantum gravity principles at the Planck density. Ultimately, black holes are formed through gravitational collapse, particularly in massive stars.
dpitluk
Messages
1
Reaction score
0
Question: If you compress an object like Earth more and more you result in an increasing gravitational force and eventually a black hole. How is an object compressed beyond the physical space that the atoms comprise? Is there a minimum size to which an object can compress?
 
Physics news on Phys.org
First off, if you compress an object, its gravity won't really change, since its mass hasn't. True, compress it enough, it could form a black hole, but (without working out the numbers) its event horizon would be very small indeed. Granted, things would keep falling towards the "ground". Since density is mass per unit volume, and the density is what becomes infinite, it's the volume that goes to zero, so, yes, the minimum size is volume-less (is that a word?).
 
I believe the Schwarzschild radius for the mass of the Earth is around 8 inches, or 20 centimeters. So if you compressed the mass of the Earth into a sphere smaller than that radius an event horizon would form, and thereafter you couldn't tell from the outside what further compression happened to e matter of Earth.

Quantum degeneracy pressure, due to the Pauli principle, is finite and can be exceeded by a sufficiently great force. I believe it was Oppenheimer with a coworker who showed that a mass over three times that of the Sun would have sufficient force under self collapse to overcome the degeneracy pressure and shrink to an infinitely dense singularity.
 
dpitluk said:
How is an object compressed beyond the physical space that the atoms comprise? Is there a minimum size to which an object can compress?
Remember that atoms are not fundamental particles, they are made up of protons, neutrons and electrons (with the protons and neutrons in turn being made up of quarks), so they are mostly empty space. Their "size" just has to do with the distance of the electrons from the nucleus.

No one is really sure what the size of fundamental particles like electrons and quarks is; string theory says they are really small loops about the size of the Planck length (which is vastly smaller than the size of an atom), while older theories treated them as mathematical points of zero size. Although general relativity says that there is no upper limit on how much you can compress matter, theories of quantum gravity might say that it cannot be compressed beyond the Planck density, which is around one Planck mass per Planck volume (Planck length cubed).
 
Last edited:
dpitluk said:
Question: If you compress an object like Earth more and more you result in an increasing gravitational force and eventually a black hole. How is an object compressed beyond the physical space that the atoms comprise? Is there a minimum size to which an object can compress?

To amplify on some of the earlier responses.

As you compress normal matter more and more, first it turns into electron degenerate matter - white dwarf star material. The electrons in such electron degenerate matter are not orbiting or associated with any particular nucleus, so you do not have familiar atomic matter at this point.

A good model for such a situation is the "particle in a box" model. You have electrons in the box, you have nuclei in the box, none of the electrons are associated in particular with any nucleus, they just share the same box. If you work out the problem in detail, the main component of pressure in the box is due to the electrons (which cannot share the same quantum state by Pauli's exclusion principle). The nucleii, being more massive, do not contribute as much to the pressure as do the lighter electrons.

After you compress normal matter even more, it turns into neutronium. Essentially the electrons are forced to combine with the protons and form neutrons, and the matter becomes one giant nucleus.

This is the "neutron star" level of density, it is significantly more dense than the electron degenerate matter found in white dwarfs. (In a real neutron star, the pressure varies with depth, so real neutron stars actually have a relative complex structure that varies with depth).

There is some speculation about other possible forms of matter involving "strange" quarks, but I don't know much about the details.

Eventually, though, with the ultimate amount of compression, we expect black holes to form.

However, by far the easiest (and perhaps the only feasible) way to compress matter to such densities is by gravity itself. This is why black holes are expected to form mainly by massive stars running out of fuel.

So the short answer is that atomic structure is destroyed relatively early in the compression process.
 
daveb said:
First off, if you compress an object, its gravity won't really change, since its mass hasn't....

This is only partially true in Newtonian physics and untrue in GR.

Firstly, in Newtonian physics, it's not ONLY the mass which determines the strength of the gravitational attraction but also the inverse square of distance to the center of mass. Thus although an object such as the Moon would feel no change if the Earth was compressed, the material of which the Earth itself is composed would.

For example, if the Earth shrank to half its size, the gravitational acceleration at 6000 Km away from the center would still be 9 m/s/s , but on the surface (now 3000 Km from the center) the acceleration would be 36 m/s/s.

Secondly, under GR, pressure as well as mass, contributes to the total "force". So, in this case, distant bodies such as the Moon, as well as the material of the Earth, would feel an increase in gravity as the Earth shrank.
The "force" acting on the Earth would, of course, be somewhat greater than that predicted by Newtonian physics.

:wink:
 
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
4K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
4K
  • · Replies 31 ·
2
Replies
31
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
1
Views
1K