How can positive numbers be used to prove an inequality challenge?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary

Discussion Overview

The discussion centers around proving the inequality involving positive numbers, specifically the inequality \(8(a^3+b^3+c^3) \ge (a+b)^3+(a+c)^3+(b+c)^3\). The scope includes mathematical reasoning and exploration of potential proofs.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • Post 1 presents the inequality to be proven, stating the condition that \(a, b, c\) are positive numbers.
  • Post 2 reiterates the inequality and emphasizes the requirement to prove it.
  • Post 3 introduces specific inequalities involving pairs of the variables, suggesting that \(a^3 + b^3 \geq a^2 b + b^2 a\), \(b^3 + c^3 \geq b^2 c + c^2 b\), and \(a^3 + c^3 \geq a^2 c + c^2 a\) could contribute to proving the main inequality.
  • Post 3 also suggests that combining these inequalities may lead to a proof of the original statement.
  • Post 4 acknowledges contributions from participants and suggests that a solution has been proposed, though it does not detail the solution itself.

Areas of Agreement / Disagreement

Participants appear to be engaged in a collaborative exploration of the inequality, with some proposing specific inequalities as part of the proof. However, there is no consensus on a definitive solution or agreement on the approach taken.

Contextual Notes

The discussion does not clarify the assumptions underlying the inequalities proposed, nor does it resolve the mathematical steps necessary to prove the main inequality.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $a,\,b,\,c$ are positive numbers, show that $8(a^3+b^3+c^3)\ge (a+b)^3+(a+c)^3+(b+c)^3$.
 
Mathematics news on Phys.org
anemone said:
If $a,\,b,\,c$ are positive numbers, show that $8(a^3+b^3+c^3)\ge (a+b)^3+(a+c)^3+(b+c)^3----(1)$.
if (1) is true then expanding and simplifying :
$8(a^3+b^3+c^3)\ge 2a^3+2b^3+2c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2$
$2(a^3+b^3+c^3)\ge a^2b+ab^2+b^2c+bc^2+a^2c+ac^2
=ab(a+b)+bc(b+c)+ca(a+c)$
$=a^2(b+c)+b^2(c+a)+c^2(a+b)---(2)$
now we only have to prove (2) ,I will have a rest ,hope someone can finish it
 
we have $a^3 + b^3 – a^2 b – b^2 a$
= $a^3 - a^2 b – b^2 a + b^3$
= $a^2(a-b)- b^2(a-b) = (a^2-b^2) (a-b) = (a+b)(a-b)^2> = 0$

Hence
$a^3 + b^3 > = a^2 b + b^2 a$

Multiply by 3 and add $a^3 + b^3$ on both sides

$4(a^3 + b^3) >= a^3 + b^3 + 3(a^2 b + b^2 a) > = (a+b)^3$
$4(a^3 + b^3) >= (a+b)^3$ .. (1)

Similarly

$4(b^3 + c^3) >= (b+c)^3$ ... (2)
$4(c^3 + a^3) >= (c+a)^3$ ...(3)

Adding (1), (2), (3) we get the result
 
Last edited:
kaliprasad said:
we have $a^3 + b^3 – a^2 b – b^2 a$
= $a^3 - a^2 b – b^2 a + b^3$
= $a^2(a-b)- b^2(a-b) = (a^2-b^2) (a-b) = (a+b)(a-b)^2> = 0$

Hence
$a^3 + b^3 > = a^2 b + b^2 a$

Multiply by 3 and add $a^3 + b^3$ on both sides

$4(a^3 + b^3) >= a^3 + b^3 + 3(a^2 b + b^2 a) > = (a+b)^3$
$4(a^3 + b^3) >= (a+b)^3$ .. (1)

Similarly

$4(b^3 + c^3) >= (b+c)^3$ ... (2)
$4(c^3 + a^3) >= (c+a)^3$ ...(3)

Adding (1), (2), (3) we get the result
$a^3 + b^3 \geq a^2 b + b^2a$---(i)
$b^3 + c^3 \geq b^2 c + c^2 b$---(ii)
$a^3 + c^3 \geq a^2 c + c^2 a$---(iii)
(i)+(ii)+(iii) is just the result of (2) of my previous post
 
Thanks to Albert and kaliprasad for participating and well done for cracking the problem in such a nice way!

Solution suggested by other:

We begin by computing

$\begin{align*} 4(a^3+b^3)-(a+b)^3&=(a+b)(4(a^2-ab+b^2)-(a+b)^2)\\&=(a+b)(3a^2-6ab+3b^2)\\&=3(a+b)(a-b)^2\\&\ge0 \end{align*}$

where the inequality holds since $a$ and $b$ are assumed to be positive, so $a+b>0$ and of course $(a-b)^2 \ge 0$.

Thus, $4a^3+4b^3>(a+b)^3$ and similarly, $4a^3+4c^3>(a+c)^3$ and $4b^3+4c^3>(b+c)^3$.

Adding these three inequalities we obtain

$8a^3+8b^3+8c^3>(a+b)^3+(a+c)^3+(b+c)^3$,

which is precisely what we wanted.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K