How can positive numbers be used to prove an inequality challenge?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality challenge states that for positive numbers \(a\), \(b\), and \(c\), the expression \(8(a^3+b^3+c^3)\) is greater than or equal to \((a+b)^3+(a+c)^3+(b+c)^3\). The proof utilizes the identities \(a^3 + b^3 \geq a^2 b + b^2 a\), \(b^3 + c^3 \geq b^2 c + c^2 b\), and \(a^3 + c^3 \geq a^2 c + c^2 a\). The combination of these inequalities confirms the original statement, demonstrating the validity of the inequality through established algebraic principles.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with the properties of positive numbers
  • Knowledge of symmetric sums
  • Experience with mathematical proofs
NEXT STEPS
  • Study the application of the AM-GM inequality in algebraic proofs
  • Explore symmetric inequalities in advanced algebra
  • Learn about the Cauchy-Schwarz inequality and its implications
  • Investigate the role of polynomial identities in proving inequalities
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced inequality proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $a,\,b,\,c$ are positive numbers, show that $8(a^3+b^3+c^3)\ge (a+b)^3+(a+c)^3+(b+c)^3$.
 
Mathematics news on Phys.org
anemone said:
If $a,\,b,\,c$ are positive numbers, show that $8(a^3+b^3+c^3)\ge (a+b)^3+(a+c)^3+(b+c)^3----(1)$.
if (1) is true then expanding and simplifying :
$8(a^3+b^3+c^3)\ge 2a^3+2b^3+2c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2$
$2(a^3+b^3+c^3)\ge a^2b+ab^2+b^2c+bc^2+a^2c+ac^2
=ab(a+b)+bc(b+c)+ca(a+c)$
$=a^2(b+c)+b^2(c+a)+c^2(a+b)---(2)$
now we only have to prove (2) ,I will have a rest ,hope someone can finish it
 
we have $a^3 + b^3 – a^2 b – b^2 a$
= $a^3 - a^2 b – b^2 a + b^3$
= $a^2(a-b)- b^2(a-b) = (a^2-b^2) (a-b) = (a+b)(a-b)^2> = 0$

Hence
$a^3 + b^3 > = a^2 b + b^2 a$

Multiply by 3 and add $a^3 + b^3$ on both sides

$4(a^3 + b^3) >= a^3 + b^3 + 3(a^2 b + b^2 a) > = (a+b)^3$
$4(a^3 + b^3) >= (a+b)^3$ .. (1)

Similarly

$4(b^3 + c^3) >= (b+c)^3$ ... (2)
$4(c^3 + a^3) >= (c+a)^3$ ...(3)

Adding (1), (2), (3) we get the result
 
Last edited:
kaliprasad said:
we have $a^3 + b^3 – a^2 b – b^2 a$
= $a^3 - a^2 b – b^2 a + b^3$
= $a^2(a-b)- b^2(a-b) = (a^2-b^2) (a-b) = (a+b)(a-b)^2> = 0$

Hence
$a^3 + b^3 > = a^2 b + b^2 a$

Multiply by 3 and add $a^3 + b^3$ on both sides

$4(a^3 + b^3) >= a^3 + b^3 + 3(a^2 b + b^2 a) > = (a+b)^3$
$4(a^3 + b^3) >= (a+b)^3$ .. (1)

Similarly

$4(b^3 + c^3) >= (b+c)^3$ ... (2)
$4(c^3 + a^3) >= (c+a)^3$ ...(3)

Adding (1), (2), (3) we get the result
$a^3 + b^3 \geq a^2 b + b^2a$---(i)
$b^3 + c^3 \geq b^2 c + c^2 b$---(ii)
$a^3 + c^3 \geq a^2 c + c^2 a$---(iii)
(i)+(ii)+(iii) is just the result of (2) of my previous post
 
Thanks to Albert and kaliprasad for participating and well done for cracking the problem in such a nice way!

Solution suggested by other:

We begin by computing

$\begin{align*} 4(a^3+b^3)-(a+b)^3&=(a+b)(4(a^2-ab+b^2)-(a+b)^2)\\&=(a+b)(3a^2-6ab+3b^2)\\&=3(a+b)(a-b)^2\\&\ge0 \end{align*}$

where the inequality holds since $a$ and $b$ are assumed to be positive, so $a+b>0$ and of course $(a-b)^2 \ge 0$.

Thus, $4a^3+4b^3>(a+b)^3$ and similarly, $4a^3+4c^3>(a+c)^3$ and $4b^3+4c^3>(b+c)^3$.

Adding these three inequalities we obtain

$8a^3+8b^3+8c^3>(a+b)^3+(a+c)^3+(b+c)^3$,

which is precisely what we wanted.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K