MHB How Can the Sum of Sines Be Expressed Using a Trigonometric Identity?

Click For Summary
The discussion focuses on expressing the sum of sines, specifically showing that the sum from 0 to n of sin k equals the formula sin(n/2)sin((n+1)/2)/sin(1/2). Participants acknowledge the elegance of this telescopic sum and commend the explanation provided. The interaction highlights the appreciation for mathematical skills and the collaborative nature of problem-solving in trigonometry. Overall, the thread emphasizes the beauty of trigonometric identities in simplifying complex sums.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\displaystyle \sum_{k=0}^n \sin k=\dfrac{\sin \dfrac{n}{2} \sin\dfrac{n+1}{2}}{\sin \dfrac{1}{2}}$.
 
Mathematics news on Phys.org
anemone said:
Show that $\displaystyle \sum_{k=0}^n \sin k=\dfrac{\sin \dfrac{n}{2} \sin\dfrac{n+1}{2}}{\sin \dfrac{1}{2}}$.

This is telescopic sum
We have $2 \sin k\, sin \dfrac{1}{2} = \cos (k- \dfrac{1}{2}) – \cos (k+ \dfrac{1}{2})$

Adding it from $\displaystyle \sum_{k=0}^n \sin k \sin \dfrac{1}{2}$
= $\cos(-\dfrac{1}{2}) – \cos(n+ \dfrac{1}{2})$
= $\cos(\dfrac{1}{2}) – \cos(n+ \dfrac{1}{2})$
= $2 sin \dfrac{n}{2} sin \dfrac{n+1}{2}$
By deviding both sides by $2\sin \dfrac{1}{2}$ we get the result
 
That's a neat skill, kali! Well done!:cool:
 
anemone said:
That's a neat skill, kali! Well done!:cool:

Thanks anemone. It was so nice of you.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
971
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K