MHB How Can the Sum of Sines Be Expressed Using a Trigonometric Identity?

AI Thread Summary
The discussion focuses on expressing the sum of sines, specifically showing that the sum from 0 to n of sin k equals the formula sin(n/2)sin((n+1)/2)/sin(1/2). Participants acknowledge the elegance of this telescopic sum and commend the explanation provided. The interaction highlights the appreciation for mathematical skills and the collaborative nature of problem-solving in trigonometry. Overall, the thread emphasizes the beauty of trigonometric identities in simplifying complex sums.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\displaystyle \sum_{k=0}^n \sin k=\dfrac{\sin \dfrac{n}{2} \sin\dfrac{n+1}{2}}{\sin \dfrac{1}{2}}$.
 
Mathematics news on Phys.org
anemone said:
Show that $\displaystyle \sum_{k=0}^n \sin k=\dfrac{\sin \dfrac{n}{2} \sin\dfrac{n+1}{2}}{\sin \dfrac{1}{2}}$.

This is telescopic sum
We have $2 \sin k\, sin \dfrac{1}{2} = \cos (k- \dfrac{1}{2}) – \cos (k+ \dfrac{1}{2})$

Adding it from $\displaystyle \sum_{k=0}^n \sin k \sin \dfrac{1}{2}$
= $\cos(-\dfrac{1}{2}) – \cos(n+ \dfrac{1}{2})$
= $\cos(\dfrac{1}{2}) – \cos(n+ \dfrac{1}{2})$
= $2 sin \dfrac{n}{2} sin \dfrac{n+1}{2}$
By deviding both sides by $2\sin \dfrac{1}{2}$ we get the result
 
That's a neat skill, kali! Well done!:cool:
 
anemone said:
That's a neat skill, kali! Well done!:cool:

Thanks anemone. It was so nice of you.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top